Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition.

We have measured ultrafast charge carrier dynamics in monolayers and trilayers of the transition metal dichalcogenides MoS2 and WSe2 using a combination of time-resolved photoluminescence and terahertz spectroscopy. We recorded a photoconductivity and photoluminescence response time of just 350 fs from CVD-grown monolayer MoS2, and 1 ps from trilayer MoS2 and monolayer WSe2. Our results indicate the potential of these materials as high-speed optoelectronic materials.

[1]  A. Kis,et al.  Electron and hole mobilities in single-layer WSe2. , 2014, ACS nano.

[2]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[3]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[4]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[5]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[6]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[7]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[8]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[9]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[10]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[11]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[12]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[13]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[14]  Huili Grace Xing,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[15]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[16]  Yong-Wei Zhang,et al.  Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2 , 2012, 1211.5653.

[17]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[18]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[19]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence , 2013 .

[20]  M. Johnston,et al.  Extreme sensitivity of graphene photoconductivity to environmental gases , 2012, Nature Communications.

[21]  G. Cha,et al.  Phototransistors: High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared (Adv. Mater. 43/2012) , 2012 .

[22]  K. Alam,et al.  Monolayer $\hbox{MoS}_{2}$ Transistors Beyond the Technology Road Map , 2012, IEEE Transactions on Electron Devices.

[23]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[24]  Chennupati Jagadish,et al.  Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. , 2012, Nano letters.

[25]  J. Kong,et al.  Integrated Circuits Based on Bilayer MoS , 2012 .

[26]  B. Radisavljevic,et al.  Small-signal amplifier based on single-layer MoS2 , 2012, 1208.5202.

[27]  Hsin-Ying Chiu,et al.  Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide , 2012, 1206.6055.

[28]  J. Lloyd‐Hughes,et al.  Ultrafast dynamics of exciton formation in semiconductor nanowires. , 2012, Small.

[29]  James Lloyd-Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .

[30]  J. Mangeney THz Photoconductive Antennas Made From Ion-Bombarded Semiconductors , 2012 .

[31]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[32]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[33]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[34]  J. Long,et al.  A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation , 2012, Science.

[35]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[36]  J. Shan,et al.  Observation of tightly bound trions in monolayer MoS , 2012 .

[37]  H. Shigekawa,et al.  Direct Probing of Transient Photocurrent Dynamics in p-WSe2 by Time-Resolved Scanning Tunneling Microscopy , 2012 .

[38]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[39]  E. Hendry,et al.  Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy , 2011 .

[40]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[41]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[42]  Arūnas Krotkus,et al.  Semiconductors for terahertz photonics applications , 2010 .

[43]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[44]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[45]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[46]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[47]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[48]  J. Lloyd‐Hughes,et al.  An ion-implanted InP receiver for polarization resolved terahertz spectroscopy. , 2007, Optics express.

[49]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[50]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[52]  Prashanth C. Upadhya,et al.  Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters , 2003 .

[53]  Zhang Xi,et al.  Materials for terahertz science and technology , 2003 .

[54]  David D. Nolte,et al.  Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications , 1999 .

[55]  S. Benjamin,et al.  Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices , 1998 .

[56]  S. Grabtchak,et al.  CONTACTLESS MICROWAVE STUDY OF DISPERSIVE TRANSPORT IN THIN FILM CDSE , 1996 .

[57]  Charles M. Lieber,et al.  Characterization of nanometer scale wear and oxidation of transition metal dichalcogenide lubricants by atomic force microscopy , 1991 .

[58]  M. Hollis,et al.  Picosecond GaAs-Based Photoconductive Optoelectronic Detectors , 1989, OSA Proceedings on Picosecond Electronics and Optoelectronics.

[59]  Haas,et al.  Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. , 1987, Physical review. B, Condensed matter.

[60]  Richard H. Friend,et al.  Electronic properties of intercalation complexes of the transition metal dichalcogenides , 1987 .

[61]  F. Raga,et al.  Excitons in molybdenum disulphide , 1975 .