An Implicit SPH Formulation for Incompressible Linearly Elastic Solids

We propose a novel smoothed particle hydrodynamics (SPH) formulation for deformable solids. Key aspects of our method are implicit elastic forces and an adapted SPH formulation for the deformation gradient that—in contrast to previous work—allows a rotation extraction directly from the SPH deformation gradient. The proposed implicit concept is entirely based on linear formulations. As a linear strain tensor is used, a rotation‐aware computation of the deformation gradient is required. In contrast to existing work, the respective rotation estimation is entirely realized within the SPH concept using a novel formulation with incorporated kernel gradient correction for first‐order consistency. The proposed implicit formulation and the adapted rotation estimation allow for significantly larger time steps and higher stiffness compared to explicit forms. Performance gain factors of up to one hundred are presented. Incompressibility of deformable solids is accounted for with an ISPH pressure solver. This further allows for a pressure‐based boundary handling and a unified processing of deformables interacting with SPH fluids and rigids. Self‐collisions are implicitly handled by the pressure solver.

[1]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[2]  Adam W. Bargteil,et al.  A point-based method for animating elastoplastic solids , 2009, SCA '09.

[3]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[4]  Rui Wang,et al.  Implicit Integration for Particle‐based Simulation of Elasto‐Plastic Solids , 2013, Comput. Graph. Forum.

[5]  G. Ganzenmuller,et al.  An hourglass control algorithm for Lagrangian Smooth Particle Hydrodynamics , 2014, 1410.7221.

[6]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.

[7]  Jan Bender,et al.  Divergence-Free SPH for Incompressible and Viscous Fluids , 2017, IEEE Transactions on Visualization and Computer Graphics.

[8]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[9]  Lenka Jerábková,et al.  Stable Cutting of Deformable Objects in Virtual Environments Using XFEM , 2009, IEEE Computer Graphics and Applications.

[10]  Markus H. Gross,et al.  Versatile Virtual Materials Using Implicit Connectivity , 2006, PBG@SIGGRAPH.

[11]  Eric Paquette,et al.  A Prediction-correction approach for stable SPH fluid simulation from liquid to rigid , 2012 .

[12]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[13]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[14]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[15]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[16]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[17]  Tiantian Liu,et al.  Towards Real-time Simulation of Hyperelastic Materials , 2016, ArXiv.

[18]  Ming C. Lin,et al.  Implicit Formulation for SPH‐based Viscous Fluids , 2015, Comput. Graph. Forum.

[19]  Jan Bender,et al.  Position-based simulation of continuous materials , 2014, Comput. Graph..

[20]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) Flexible Simulation of Deformable Models Using Discontinuous Galerkin Fem , 2022 .

[21]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[22]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[23]  Rahul Narain,et al.  ADMM ⊇ projective dynamics: fast simulation of general constitutive models , 2016, Symposium on Computer Animation.

[24]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[25]  Matthias Müller,et al.  Solid simulation with oriented particles , 2011, ACM Trans. Graph..

[26]  Shi-Min Hu,et al.  Multiple-Fluid SPH Simulation Using a Mixture Model , 2014, ACM Trans. Graph..

[27]  Ben Jones,et al.  Deformation embedding for point-based elastoplastic simulation , 2014, TOGS.

[28]  Matthias Teschner,et al.  Prescribed Velocity Gradients for Highly Viscous SPH Fluids with Vorticity Diffusion , 2017, IEEE Transactions on Visualization and Computer Graphics.

[29]  Matthias Teschner,et al.  An implicit viscosity formulation for SPH fluids , 2015, ACM Trans. Graph..

[30]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[31]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[32]  翔貴 宮川 ”Fast Simulation of Mass-Spring Systems”の研究報告 , 2016 .

[33]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[34]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[35]  Matthias Müller,et al.  XPBD: position-based simulation of compliant constrained dynamics , 2016, MIG.

[36]  Stefan Jeschke,et al.  Dart Throwing on Surfaces , 2009, Comput. Graph. Forum.

[37]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[38]  Philip Dutré,et al.  An architecture for unified SPH simulations , 2009 .

[39]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[40]  Ming C. Lin,et al.  A Multilevel SPH Solver with Unified Solid Boundary Handling , 2016, Comput. Graph. Forum.

[41]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[42]  Michael May,et al.  Hourglass control for Smooth Particle Hydrodynamics removes tensile and rank-deficiency instabilities , 2016 .

[43]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[44]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[45]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[46]  Sivakumar Kulasegaram,et al.  Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods , 2001 .

[47]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[48]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[49]  John C. Platt,et al.  Heating and melting deformable models , 1991, Comput. Animat. Virtual Worlds.

[50]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[51]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[52]  Jan Bender,et al.  A robust method to extract the rotational part of deformations , 2016, MIG.

[53]  Matthias Teschner,et al.  A Parallel SPH Implementation on Multi‐Core CPUs , 2011, Comput. Graph. Forum.

[54]  J. Bonet,et al.  Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations , 1999 .

[55]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[56]  Matthias Müller,et al.  Real-time simulation of large elasto-plastic deformation with shape matching , 2016, Symposium on Computer Animation.

[57]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[58]  Jan Bender,et al.  Projective fluids , 2016, MIG.

[59]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[60]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[61]  Matthias Teschner,et al.  Generalized drag force for particle-based simulations , 2017, Comput. Graph..

[62]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[63]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[64]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[65]  Georg C. Ganzenmüller,et al.  An hourglass control algorithm for Lagrangian Smooth Particle Hydrodynamics , 2015 .

[66]  Gavin S. P. Miller,et al.  Globular dynamics: A connected particle system for animating viscous fluids , 1989, Comput. Graph..

[67]  Matthias Teschner,et al.  Corotated SPH for Deformable Solids , 2009, NPH.

[68]  Markus H. Gross,et al.  A versatile and robust model for geometrically complex deformable solids , 2004, Proceedings Computer Graphics International, 2004..

[69]  Miguel A. Otaduy,et al.  A Survey on Position‐Based Simulation Methods in Computer Graphics , 2014, Comput. Graph. Forum.

[70]  S. Hiermaier,et al.  On the similarity of meshless discretizations of Peridynamics and Smooth-Particle Hydrodynamics , 2014, 1401.8268.

[71]  Rüdiger Westermann,et al.  A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects , 2011, IEEE Transactions on Visualization and Computer Graphics.

[72]  Ronald Fedkiw,et al.  Energy Conservation for the Simulation of Deformable Bodies , 2012 .

[73]  Jan Bender,et al.  Robust eXtended finite elements for complex cutting of deformables , 2017, ACM Trans. Graph..

[74]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[75]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[76]  Philip Dutré,et al.  Unified SPH model for fluid-shell simulations , 2008, SIGGRAPH '08.

[77]  Yoshinori Dobashi,et al.  Volume preserving viscoelastic fluids with large deformations using position-based velocity corrections , 2014, The Visual Computer.

[78]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[79]  Paul W. Cleary,et al.  Modelling of metal forging using SPH , 2012 .

[80]  Huamin Wang,et al.  Projective Peridynamics for Modeling Versatile Elastoplastic Materials , 2018, IEEE Transactions on Visualization and Computer Graphics.

[81]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.