Design and performance of a high-resolution frictional force microscope with quantitative three-dimensional force sensitivity

In this article, the construction and initial tests of a frictional force microscope are described. The instrument makes use of a microfabricated cantilever that allows one to independently measure the lateral forces in X and Y directions as well as the normal force. We use four fiber-optic interferometers to detect the motion of the sensor in three dimensions. The properties of our cantilevers allow easy and accurate normal and lateral force calibration, making it possible to measure the lateral force on a fully quantitative basis. First experiments on highly oriented pyrolytic graphite demonstrate that the microscope is capable of measuring lateral forces with a resolution down to 15pN.

[1]  Robert W. Carpick,et al.  Calibration of frictional forces in atomic force microscopy , 1996 .

[2]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[3]  Patrik Hoffmann,et al.  Comparison of mechanically drawn and protection layer chemically etched optical fiber tips , 1995 .

[4]  A. Morse,et al.  Fundamental limits to force detection using quartz tuning forks , 2000 .

[5]  H. Güntherodt,et al.  A low temperature ultrahigh vaccum scanning force microscope , 1999 .

[6]  U. Landman,et al.  Nanotribology: friction, wear and lubrication at the atomic scale , 1995, Nature.

[7]  Udo D. Schwarz,et al.  A miniature fibre optic force microscope scan head , 1993 .

[8]  U. Hartmann,et al.  Fiber interferometer-based variable temperature scanning force microscope , 1997 .

[9]  E. V. D. Drift,et al.  Fabrication of a novel scanning probe device for quantitative nanotribology , 2000 .

[10]  Sidney R. Cohen,et al.  Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces , 1993 .

[11]  Y. Sugawara,et al.  ANALYSIS OF EXPERIMENTAL LOAD DEPENDENCE OF TWO-DIMENSIONAL ATOMIC-SCALE FRICTION , 1998 .

[12]  R. Wiesendanger,et al.  Friction Force Spectroscopy in the Low-Load Regime with Well-Defined Tips , 1997 .

[13]  J. Frenken,et al.  Superlubricity of graphite. , 2004, Physical review letters.

[14]  Robert W. Carpick,et al.  Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope , 1996 .

[15]  P. Hansma,et al.  A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .

[16]  T. Kasser,et al.  FRICTIONAL FORCE BETWEEN A SHARP ASPERITY AND A SURFACE STEP , 1997 .

[17]  Udo D. Schwarz,et al.  Quantitative analysis of lateral force microscopy experiments , 1996 .

[18]  Pierre-Emmanuel Mazeran,et al.  Force modulation with a scanning force microscope: an analysis , 1997 .

[19]  I. L. Singer,et al.  Hertzian stress contribution to low friction behavior of thin MoS2 coatings , 1990 .

[20]  J. A. Greenwood Contact of Rough Surfaces , 1992 .

[21]  D. Dowson History of Tribology , 1979 .

[22]  I. L. Singer,et al.  Fundamentals of friction : macroscopic and microscopic processes , 1992 .

[23]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[24]  Bharat Bhushan MICRO/NANOTRIBOLOGY AND ITS APPLICATIONS , 1997 .

[25]  T. Tsong,et al.  Step edge diffusion and the structure of nanometer-size Ir islands on the Ir(111) surface , 1996 .