Global harmony: coupled noise analysis for full-chip RC interconnect networks

Noise is becoming one of the most important metrics in the design of VLSI systems, certainly of comparable importance to area, timing, and power. In this paper, we describe Global Harmony, a methodology for the analysis of coupling noise in the global interconnect of large VLSI chips, being developed for the design of high-performance microprocessors. The architecture of Global Harmony involves a careful combination of static noise analysis, static timing analysis, and reduced-order modelling techniques. We describe a reduced-order modelling approach that allows for passive multiport reduction of RC netlists as impedance macromodels while preserving the symmetry and sparsity of the state matrices for efficient storage. We describe how the macromodels are practically employed to perform coupling analysis and how timing constraints can be used to limit pessimism in the analysis.

[1]  R. Freund,et al.  Software for simplified Lanczos and QMR algorithms , 1995 .

[2]  Ibrahim M. Elfadel,et al.  Zeros and passivity of Arnoldi-reduced-order models for interconnect networks , 1997, DAC.

[3]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[4]  Imad M. Jaimoukha,et al.  Oblique Production Methods for Large Scale Model Reduction , 1995, SIAM J. Matrix Anal. Appl..

[5]  Kenneth L. Shepard,et al.  Design methodology for the S/390 Parallel Enterprise Server G4 microprocessors , 1997, IBM J. Res. Dev..

[6]  Ernest S. Kuh,et al.  Theory of Linear Active Networks , 1967 .

[7]  Jacob K. White,et al.  A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits , 1996, ICCAD 1996.

[8]  C. L. Ratzlaff,et al.  Modeling The RC-interconnect Effects In A Hierarchical Timing Analyzer , 1992, 1992 Proceedings of the IEEE Custom Integrated Circuits Conference.

[9]  Lawrence T. Pillage,et al.  AWE macromodels of VLSI interconnect for circuit simulation , 1992, 1992 IEEE/ACM International Conference on Computer-Aided Design.

[10]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[11]  Vivek Raghavan,et al.  AWESpice: a general tool for the accurate and efficient simulation of interconnect problems , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[12]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[13]  J. Cullum,et al.  A block Lanczos algorithm for computing the q algebraically largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices , 1974, CDC 1974.

[14]  K. L. Shepard,et al.  Noise in deep submicron digital design , 1996, ICCAD 1996.

[15]  E. A. S Guillemin,et al.  Synthesis of Passive Networks , 1957 .

[16]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[17]  Ronald A. Rohrer,et al.  Interconnect simulation with asymptotic waveform evaluation (AWE) , 1992 .

[18]  Lawrence T. Pileggi,et al.  Asymptotic waveform evaluation for timing analysis , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Roland W. Freund,et al.  Reduced-order modeling of large passive linear circuits by means of the SYPVL algorithm , 1996, ICCAD 1996.

[20]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[21]  Lawrence T. Pileggi,et al.  Time-domain macromodels for VLSI interconnect analysis , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Roland W. Freund,et al.  Reduced-Order Modeling of Large Linear Subcircuits via a Block Lanczos Algorithm , 1995, 32nd Design Automation Conference.

[24]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.