List colourings of graphs
暂无分享,去创建一个
[1] Carsten Thomassen,et al. Every Planar Graph Is 5-Choosable , 1994, J. Comb. Theory B.
[2] P. Franklin. A Six Color Problem , 1934 .
[3] Shai Gutner,et al. The complexity of planar graph choosability , 1996, Discret. Math..
[4] Douglas R. Woodall,et al. Defective colorings of graphs in surfaces: Partitions into subgraphs of bounded valency , 1986, J. Graph Theory.
[5] Riste Skrekovski. A note on choosability with separation for planar graphs , 2001, Ars Comb..
[6] Zsolt Tuza,et al. Algorithmic complexity of list colorings , 1994, Discret. Appl. Math..
[7] Hikoe Enomoto,et al. Choice number of some complete multi-partite graphs , 2002, Discret. Math..
[8] Roland Häggkvist,et al. A note on list-colorings , 1989, J. Graph Theory.
[9] P. Hall. On Representatives of Subsets , 1935 .
[10] Mark N. Ellingham,et al. List edge colourings of some 1-factorable multigraphs , 1996, Comb..
[11] Noga Alon,et al. Colorings and orientations of graphs , 1992, Comb..
[12] Bojan Mohar,et al. List Total Colourings of Graphs , 1998, Combinatorics, Probability and Computing.
[13] Roland Häggkvist,et al. Some upper bounds on the total and list chromatic numbers of multigraphs , 1992, J. Graph Theory.
[14] Kyoji Ohba. On chromatic-choosable graphs , 2002 .
[15] Sylvain Gravier,et al. Graphs whose choice number is equal to their chromatic number , 1998 .
[16] Riste Škrekovski. List Improper Colourings of Planar Graphs , 1999 .
[17] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[18] P. J. Heawood. Map-Colour Theorem , 1949 .
[19] N. Alon. Restricted colorings of graphs , 1993 .
[20] Jan Kratochvíl,et al. Brooks-type theorems for choosability with separation , 1998 .
[21] Fred Galvin,et al. The List Chromatic Index of a Bipartite Multigraph , 1995, J. Comb. Theory B.
[22] Alexandr V. Kostochka,et al. Choosability conjectures and multicircuits , 2001, Discret. Math..
[23] R. L. Brooks. On Colouring the Nodes of a Network , 1941 .
[24] Zsolt Tuza,et al. Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.
[25] Riste Skrekovski,et al. Choosability of K5-minor-free graphs , 1998, Discret. Math..
[26] C. Shannon. A Theorem on Coloring the Lines of a Network , 1949 .
[27] Robin Thomas,et al. The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.
[28] Sylvain Gravier,et al. Choice number of 3-colorable elementary graphs , 1997, Discret. Math..
[29] Anthony J. W. Hilton,et al. The Hall Number, the Hall Index, and the Total Hall Number of a Graph , 1999, Discret. Appl. Math..
[30] Margit Voigt,et al. Every 2-choosable graph is (2 m, m )-choosable , 1996 .
[31] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[32] Gary MacGillivray,et al. Choosability of bipartite graphs , 1996, Ars Comb..
[33] Douglas R. Woodall,et al. Edge-choosability in line-perfect multigraphs , 1999, Discret. Math..
[34] K. Appel,et al. Every planar map is four colorable. Part II: Reducibility , 1977 .
[35] Margit Voigt,et al. A not 3-choosable planar graph without 3-cycles , 1995, Discret. Math..
[36] Oleg V. Borodin,et al. On the total coloring of planar graphs. , 1989 .
[37] Tommy R. Jensen,et al. Graph Coloring Problems , 1994 .
[38] Michael Plantholt,et al. On the list chromatic index of nearly bipartite multigraphs , 1999, Australas. J Comb..
[39] Alexandr V. Kostochka,et al. On kernel-perfect orientations of line graphs , 1998, Discret. Math..
[40] Douglas R. Woodall. Edge-choosability of multicircuits , 1999, Discret. Math..
[41] Frédéric Maffray,et al. Kernels in perfect line-graphs , 1992, J. Comb. Theory, Ser. B.
[42] Roland Häggkvist,et al. New Bounds on the List-Chromatic Index of the Complete Graph and Other Simple Graphs , 1997, Combinatorics, Probability and Computing.
[43] Alexandr V. Kostochka,et al. List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.
[44] G. Dirac. A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .
[45] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[46] Tomaz Slivnik,et al. Short Proof of Galvin's Theorem on the List-chromatic Index of a Bipartite Multigraph , 1996, Combinatorics, Probability and Computing.
[47] Zsolt Tuza,et al. New trends in the theory of graph colorings: Choosability and list coloring , 1997, Contemporary Trends in Discrete Mathematics.
[48] G. Ringel,et al. Solution of the heawood map-coloring problem. , 1968, Proceedings of the National Academy of Sciences of the United States of America.
[49] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[50] Robin Thomas,et al. List Edge-Colorings of Series-Parallel Graphs , 1999, Electron. J. Comb..
[51] Douglas R. Woodall. Defective choosability results for outerplanar and related graphs , 2002, Discret. Math..
[52] Sylvain Gravier,et al. A Hajós-like theorem for list coloring , 1996, Discret. Math..
[53] Thomas C. Hull,et al. Defective List Colorings of Planar Graphs , 1997 .