Choanoflagellates, choanocytes, and animal multicellularity

Abstract. It is widely accepted that multicellular animals (metazoans) constitute a monophyletic unit, deriving from ancestral choanoflagellate-like protists that gave rise to simple choanocyte-bearing metazoans. However, a re-assessment of molecular and histological evidence on choanoflagellates, sponge choanocytes, and other metazoan cells reveals that the status of choanocytes as a fundamental cell type in metazoan evolution is unrealistic. Rather, choanocytes are specialized cells that develop from non-collared ciliated cells during sponge embryogenesis. Although choanocytes of adult sponges have no obvious homologue among metazoans, larval cells transdifferentiating into choanocytes at metamorphosis do have such homologues. The evidence reviewed here also indicates that sponge larvae are architecturally closer than adult sponges to the remaining metazoans. This may mean that the basic multicellular organismal architecture from which diploblasts evolved, that is, the putative planktonic archimetazoan, was more similar to a modern poriferan larva lacking choanocytes than to an adult sponge. Alternatively, it may mean that other metazoans evolved from a neotenous larva of ancient sponges. Indeed, the Porifera possess some features of intriguing evolutionary significance: (1) widespread occurrence of internal fertilization and a notable diversity of gastrulation modes, (2) dispersal through architecturally complex lecithotrophic larvae, in which an ephemeral archenteron (in dispherula larvae) and multiciliated and syncytial cells (in trichimella larvae) occur, (3) acquisition of direct development by some groups, and (4) replacement of choanocyte-based filter-feeding by carnivory in some sponges. Together, these features strongly suggest that the Porifera may have a longer and more complicated evolutionary history than traditionally assumed, and also that the simple anatomy of modern adult sponges may have resulted from a secondary simplification. This makes the idea of a neotenous evolution less likely than that of a larva-like choanocyte-lacking archimetazoan. From this perspective, the view that choanoflagellates may be simplified sponge-derived metazoans, rather than protists, emerges as a viable alternative hypothesis. This idea neither conflicts with the available evidence nor can be disproved by it, and must be specifically re-examined by further approaches combining morphological and molecular information. Interestingly, several microbial lin°Cages lacking choanocyte-like morphology, such as Corallochytrea, Cristidiscoidea, Ministeriida, and Mesomycetozoea, have recently been placed at the boundary between fungi and animals, becoming a promising source of information in addition to the choanoflagellates in the search for the unicellular origin of animal multicellularity.

[1]  J. Hedgpeth EVOLUTION OF THE METAZOAN LIFE CYCLE , 1974 .

[2]  J. Vacelet,et al.  Carnivorous sponges , 1995, Nature.

[3]  S. Piraino,et al.  The cnidarian premises of metazoan evolution: From triploblasty, to coelom formation, to metamery , 1998 .

[4]  T. Simpson,et al.  The Cell Biology of Sponges , 1984, Springer New York.

[5]  H Philippe,et al.  Opinion: long branch attraction and protist phylogeny. , 2000, Protist.

[6]  B. Leadbeater,et al.  Cytoskeleton Structure and Composition in Choanoflagellates , 1998 .

[7]  B. Leadbeater Life-history and ultrastructure of a new marine species of Proterospongia (Choanoflagellida) , 1983, Journal of the Marine Biological Association of the United Kingdom.

[8]  S. Leys,et al.  Phylogenetic Position of the Hexactinellida Within the Phylum Porifera Based on the Amino Acid Sequence of the Protein Kinase C from Rhabdocalyptus dawsoni , 1998, Journal of Molecular Evolution.

[9]  R. Rieger The Biphasic Life Cycle—A Central Theme of Metazoan Evolution , 1994 .

[10]  A. Collins,et al.  Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  I. Hori,et al.  Metamorphosis of Coeloblastula Performed by Multipotential Larval Flagellated Cells in the Calcareous Sponge Leucosolenia laxa , 2001, The Biological Bulletin.

[12]  O. Duboscq,et al.  L'Ovogénèse, la fécondation et les premiers stades du développement des éponges calcaires , 1937 .

[13]  R. Soest,et al.  Phylum Porifera Grant, 1836 , 2002 .

[14]  W. Müller Origin of Metazoa: Sponges as Living Fossils , 1998, Naturwissenschaften.

[15]  E. Lankester Degeneration : a chapter in Darwinism / by E. Ray Lankester. , 1880 .

[16]  Sudhir Kumar,et al.  Evolutionary relationships of eukaryotic kingdoms , 1996, Journal of Molecular Evolution.

[17]  V. Storch Contributions of Comparative Ultrastructural Research to Problems of Invertebrate Evolution , 1979 .

[18]  G. H. Coombs,et al.  Evolutionary relationships among protozoa. , 1998 .

[19]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[20]  A. Ereskovsky,et al.  New data on embryonic development of Halisarca dujardini Johnston, 1842 (Demospongiae, Halisarcida) , 2000 .

[21]  A. Porte,et al.  Étude au microscope électronique de l'éponge Oscarella lobularis Schmidt et de sa larve Amphiblastula , 1962 .

[22]  H. James-Clark XXXIII.—On the Spongiæ ciliatæ as Infusoria flagellata; or observations on the structure, animality, and relationship of Leucosolenia botryoides, bowerbank , 1868 .

[23]  R. R. Strathmann Hypotheses on the Origins of Marine Larvae , 1993 .

[24]  C. Young,et al.  Atlas of Marine Invertebrate Larvae , 2003 .

[25]  C. Green,et al.  Phylogenetic Relationships within Theinvertebrata in Relation to Thestructure of Septate Junctions and the development of ‘Occluding’ Junctional Types , 1982 .

[26]  B. Leadbeater Developmental studies on the loricate choanoflagellate Stephanoeca diplocostata ellis: VIII. Nuclear division and cytokinesis , 1994 .

[27]  D. Sankoff,et al.  Genome structure and gene content in protist mitochondrial DNAs. , 1998, Nucleic acids research.

[28]  I. Hori,et al.  Metamorphosis of calcareous sponges II. Cell rearrangement and differentiation in metamorphosis , 1993 .

[29]  N. Satoh,et al.  Early evolution of the Metazoa and phylogenetic status of diploblasts as inferred from amino acid sequence of elongation factor-1 alpha. , 1996, Molecular phylogenetics and evolution.

[30]  M. Maldonado,et al.  The cellular basis of photobehavior in the tufted parenchymella larva of demosponges , 2003 .

[31]  B. Leadbeater Observations on the life-history and ultrastructure of the marine choanoflagellate Choanoeca perplexa Ellis , 1977, Journal of the Marine Biological Association of the United Kingdom.

[32]  S. Carroll,et al.  A receptor tyrosine kinase from choanoflagellates: Molecular insights into early animal evolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Maldonado,et al.  Effects of physical factors on larval behavior, settlement and recruitment of four tropical demosponges , 1996 .

[34]  A. Ereskovsky,et al.  Larval development in the Homoscleromorpha (Porifera, Demospongiae) , 2005 .

[35]  H. James-Clark Note on the Infusoria flagellata and the Spongiae ciliatae , 1871, American Journal of Science and Arts.

[36]  J. Farris,et al.  Support, Ribosomal Sequences and the Phylogeny Of The Eukaryotes , 1998, Cladistics : the international journal of the Willi Hennig Society.

[37]  E. A. Minchin Note on the larva and the postlarval development of Leucosolenia variabilis, H. sp., with remarks on the development of other asconidæ , 1897, Proceedings of the Royal Society of London.

[38]  J. Corliss An interim utilitarian [user-friendly] hierarchical classification and characterization of the protists , 1994 .

[39]  C. Nielsen Structure and Function of Metazoan Ciliary Bands and Their Phylogenetic Significance , 1987 .

[40]  H. James-Clark XXII.—On theSpongiæ ciliatæasInfusoria flagellata;or observations on the structure, animality, and relationship ofLeucosolenia botryoides,Bowerbank , 1868 .

[41]  C. Cunningham,et al.  A new perspective on lower metazoan relationships from 18S rDNA sequences. , 1999, Molecular biology and evolution.

[42]  Yves Van de Peer,et al.  Evolutionary Relationships Among the Eukaryotic Crown Taxa Taking into Account Site-to-Site Rate Variation in 18S rRNA , 1997, Journal of Molecular Evolution.

[43]  C. Borchiellini,et al.  Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. , 1998, Molecular biology and evolution.

[44]  B. Lang,et al.  The Closest Unicellular Relatives of Animals , 2002, Current Biology.

[45]  B. Leadbeater,et al.  A light and electron microscope study of the choanoflagellatesAcanthoeca spectabilis ellis andA. brevipoda ellis , 1974, Archives of Microbiology.

[46]  L. Buss,et al.  The evolution of individuality , 1987 .

[47]  C. Nielsen Animal phylogeny in the light of the trochaea theory , 1985 .

[48]  G. Mackie,et al.  Studies on Hexactinellid Sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873) , 1983 .

[49]  G. Mackie,et al.  Studies on Hexactinellid Sponges. III. The Taxonomic Status of Hexactinellida Within the Porifera , 1983 .

[50]  N. Noro,et al.  Type IV collagen in sponges, the missing link in basement membrane ubiquity * , 1996, Biology of the cell.

[51]  B. Lafay,et al.  Molecular systematics of sponges (Porifera) , 2000, Hydrobiologia.

[52]  P. Holland,et al.  Hsp70 sequences indicate that choanoflagellates are closely related to animals , 2001, Current Biology.

[53]  L. Salvini-Plawen,et al.  Ocelli in a Cnidaria polyp: the ultrastructure of the pigment spots in Stylocoronella riedli (Scyphozoa, Stauromedusae) , 1995, Zoomorphology.

[54]  A. Ereskovsky,et al.  Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha): transmission of maternal cells and symbiotic bacteria , 2002 .

[55]  J. McInerney,et al.  Indications of relationships between poriferan classes using full-length 18s rRNA gene sequences , 1999 .

[56]  R. Borojević Étude expérimentale de la différenciation des cellules de l'éponge au cours de son développement , 1966 .

[57]  A. Collins,et al.  Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[58]  C. Fisher,et al.  A methanotrophic carnivorous sponge , 1995, Nature.

[59]  N. Boury‐Esnault,et al.  Reproduction of a hexactinellid sponge: first description of gastrulation by cellular delamination in the Porifera , 1999 .

[60]  S. Raghu-kumar Occurrence of the Thraustochytrid, Corallochytrium limacisporum gen. et sp. nov. in the Coral Reef Lagoons of the Lakshadweep Islands in the Arabian Sea , 1987 .

[61]  T. Cavalier-smith,et al.  Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[62]  F. Harrison,et al.  Placozoa, porifera, cnidaria, and ctenophora , 1991 .

[63]  A. H. Clark,et al.  Animal evolution , 1981 .

[64]  D. Patterson,et al.  The Diversity of Eukaryotes , 1999, The American Naturalist.

[65]  R. Woollacott,et al.  Flagellar basal apparatus and its utility in phylogenetic analyses of the porifera , 1995, Journal of morphology.

[66]  R. Soest,et al.  Systema Porifera. A Guide to the Classification of Sponges , 2002 .

[67]  H. A. Thomsen,et al.  Loricate choanoflagellates of the Southern Ocean with new observations on cell division in Bicosta spinifera (Throndsen, 1970) from Antarctica and Saroeca attenuata Thomsen, 1979, from the Baltic Sea , 1992, Polar Biology.

[68]  M. Manuel,et al.  Sponge paraphyly and the origin of Metazoa , 2001, Journal of evolutionary biology.

[69]  C. Lévi,et al.  Morphogenese experimentale d'une eponge a partir de cellules de la larve nageante dissociee , 1965, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[70]  W. Doolittle,et al.  Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[71]  R. Jenner,et al.  The grand game of metazoan phylogeny: rules and strategies , 1999 .

[72]  D. Hibberd Observations on the ultrastructure of the choanoflagellate Codosiga botrytis (Ehr.) Saville-Kent with special reference to the flagellar apparatus. , 1975, Journal of cell science.

[73]  J. Pechenik On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles , 1999 .

[74]  B. Degnan,et al.  Cytological Basis of Photoresponsive Behavior in a Sponge Larva , 2001, The Biological Bulletin.

[75]  P. Fell Chapter 2 – PORIFERA , 1974 .

[76]  J. Reitner,et al.  Observations on Astraeospongium meniscum (Roemer, 1948) from the Silurian of western Tennessee , 1996 .

[77]  W. S. Kent XVII.—Notes on the embryology of sponges , 1878 .

[78]  L. Vos Morphogenesis of the collagenous shell of the gemmules of a fresh-water sponge Ephydatia fluviatilis , 1977 .

[79]  T. Cavalier-smith,et al.  Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution , 2003, Journal of Molecular Evolution.

[80]  T. Cavalier-smith,et al.  A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.

[81]  S. Morris The origins and relationships of lower invertebrates , 1983 .

[82]  B. Afzelius Flimmer-flagellum of the Sponge , 1961, Nature.

[83]  John Edward Gray,et al.  Notes on the arrangement of sponges, with the description of some new genera , 1867 .

[84]  M. Maldonado,et al.  An experimental approach to the ecological significance of microhabitat-scale movement in an encrusting sponge , 1999 .

[85]  C. Nielsen Animal Evolution: Interrelationships of the Living Phyla , 1995 .

[86]  M. Sará,et al.  Viviparous development in the Antarctic sponge Stylocordyla borealis Loven, 1868 , 2002, Polar Biology.

[87]  B. Degnan,et al.  Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes , 2005 .

[88]  R. Gutell,et al.  A novel clade of protistan parasites near the animal-fungal divergence. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[89]  T. Cavalier-smith,et al.  Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagellates , 1996 .

[90]  R. R. Strathmann Feeding and Nonfeeding Larval Development and Life-History Evolution in Marine Invertebrates , 1985 .

[91]  P. Ledger Septate junctions in the calcareous sponge Sycon ciliatum. , 1975, Tissue & cell.

[92]  H. Reiswig Class Hexactinellida Schmidt, 1870 , 2002 .

[93]  P. Brien La réorganisation de l'Eponge après dissociation par filtration et phénomènes d'involution chez Ephydatia Fluviatilis , 1937 .

[94]  Wen-Tien Chen REPRODUCTION AND SPECIATION IN HALISARCA , 1976 .

[95]  T. Cavalier-smith,et al.  Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence , 1996 .

[96]  C. Nielsen Larval and Adult Characters in Animal Phytogeny , 1994 .

[97]  H. Meewis Contribution a l'etude de l'embryogenese des Myxospongiae : Halisarca lobularis (Schmidt) , 1938 .

[98]  W. Ford Doolittle,et al.  An Updated and Comprehensive rRNA Phylogeny of (Crown) Eukaryotes Based on Rate-Calibrated Evolutionary Distances , 2000, Journal of Molecular Evolution.

[99]  B. Picton New perspectives in sponge biology: Edited by Klaus Rützler; Smithsonian Institution Press, Washington, D.C.; 1990; 533 pp.; US$ 50.00, GBP 38.95; ISBN 0-87474-784-8 , 1995 .

[100]  G. Mackie,et al.  Electrical recording from a glass sponge , 1997, nature.

[101]  L. Mendoza,et al.  The class mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. , 2002, Annual review of microbiology.

[102]  M. Sogin,et al.  The Nucleariid Amoebae: More Protists at the Animal-Fungal Boundary , 2001, The Journal of eukaryotic microbiology.

[103]  F. Harrison Microscopic anatomy of invertebrates , 1991 .

[104]  N. Lartillot,et al.  The new animal phylogeny: reliability and implications. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[105]  L. Smith,et al.  Molecular evidence that the myxozoan protists are metazoans. , 1994, Science.

[106]  M. Siddall,et al.  Molecular phylogenetic evidence that the phylum Haplosporidia has an alveolate ancestry. , 1995, Molecular biology and evolution.

[107]  J. Smith XVI.—Plesiopid fishes from South and East Africa , 1952 .

[108]  T. Cavalier-smith,et al.  Neomonada and the origin of animals and fungi. , 1998 .