First digital study of the frontal sinus of stem-Canini (Canidae, Carnivora): evolutionary and ecological insights throughout advanced diagnostic in paleobiology

Introduction The phylogenetic and ecological importance of paranasal sinuses in carnivorans was highlighted by several previous authors, mostly in extant species. Nevertheless, no specific study on this feature on extant canids, and no one on fossil representatives of the family, has been published up to now. Here, we analyze for the first time the paranasal sinus of extant and fossil canids through computed tomographic techniques to characterize them morphologically and morphometrically, making ecological inferences. Methods To do so, we applied for the first time an innovative deformation-based morphometric approach. Results The results obtained for extant species highlight a remarkable correlation between morphology and ecomorphotypes previously defined by some scholars (namely hypercarnivorous group-hunters; small-prey hypercarnivores, mesocarnivores, hypocarnivores). Our results thus support the direct relationship between diet preferences and the development of frontal sinus in canids. Regarding fossil specimens, we reconstructed for the first time the frontal sinus of three Eucyon species and compared it to those of living forms. Discussion The best-preserved specimen, the only known cranium of Eucyon adoxus dated to the Late Pliocene of Saint-Estève (France), displayed similarities with hypercarnivorous group-hunter canids by the large sinus prominences. Given that the overall craniodental morphology of E. adoxus suggests that it acted as a small prey hypercarnivore—similar to extant Canis simensis—the aforementioned affinities might have evolved independently, in relation to high stresses during feeding. Overall, our study demonstrates that morphological inspection and deformation-based geometric morphometrics complement each other and allow a thorough investigation of sinus shape variability, thus enabling the study of sinus morphology in other fossil carnivorans with the ultimate goal of inferring their ecological preferences.

[1]  P. Renne,et al.  The earliest Ethiopian wolf: implications for the species evolution and its future survival , 2023, Communications biology.

[2]  F. Montefeltro,et al.  Different, but the same: Inferring the hunting behaviour of the hypercarnivorous bush dog (Speothos venaticus) through finite element analysis , 2022, Journal of anatomy.

[3]  Laura T. Buck,et al.  Frontal sinuses and human evolution , 2022, Science advances.

[4]  N. Spassov,et al.  New insights on Early Pleistocene Nyctereutes from the Balkans based on material from Dafnero-3 (Greece) and Varshets (Bulgaria) , 2022, Palaeoworld.

[5]  L. Rook,et al.  The carnivorans from Cava Monticino (Faenza, Italy; Messinian) revisited , 2022, Historical Biology.

[6]  O. Kullmer,et al.  Further analyses of the structural organization of Homo luzonensis teeth: Evolutionary implications. , 2022, Journal of human evolution.

[7]  Adrian Marciszak,et al.  The first record of Cuon alpinus (Pallas, 1811) from Poland and the possible impact of other large canids on the evolution of the species , 2021, Journal of Quaternary Science.

[8]  J. Morales,et al.  Eucyon khoikhoi sp. nov. (Carnivora: Canidae) from Langebaanweg ‘E’ Quarry (early Pliocene, South Africa): the most complete African canini from the Mio-Pliocene , 2021 .

[9]  A. Ozga,et al.  Dire wolves were the last of an ancient New World canid lineage , 2021, Nature.

[10]  L. Rook,et al.  "Canis" ferox Revisited: Diet Ecomorphology of Some Long Gone (Late Miocene and Pliocene) Fossil Dogs , 2020, Journal of Mammalian Evolution.

[11]  D. Lordkipanidze,et al.  The Wolf From Dmanisi and Augmented Reality: Review, Implications, and Opportunities , 2020, Frontiers in Earth Science.

[12]  Z. J. Tseng,et al.  Biomechanical simulations reveal a trade-off between adaptation to glacial climate and dietary niche versatility in European cave bears , 2020, Science Advances.

[13]  S. Moyà-Solà,et al.  The evolution of the vestibular apparatus in apes and humans , 2020, eLife.

[14]  J. Morales,et al.  NYCTEREUTES (MAMMALIA, CARNIVORA, CANIDAE) FROM LAYNA AND THE EURASIAN RACCOON-DOGS: AN UPDATED REVISION , 2018 .

[15]  Stanley Durrleman,et al.  Deformetrica 4: An Open-Source Software for Statistical Shape Analysis , 2018, ShapeMI@MICCAI.

[16]  J. Zrzavý,et al.  Phylogeny of the Caninae (Carnivora): Combining morphology, behaviour, genes and fossils , 2018, Zoologica Scripta.

[17]  B. Valkenburgh,et al.  Diet-related differences in craniodental morphology between captive-reared and wild coyotes, Canis latrans (Carnivora: Canidae) , 2018 .

[18]  D. Alba,et al.  Inferences of social behavior in bone-cracking hyaenids (Carnivora, Hyaenidae) based on digital paleoneurological techniques: Implications for human–carnivoran interactions in the Pleistocene , 2016 .

[19]  Jean Dumoncel,et al.  Upper third molar internal structural organization and semicircular canal morphology in Plio-Pleistocene South African cercopithecoids. , 2016, Journal of human evolution.

[20]  M. Sotnikova,et al.  Cynotherium malatestai, sp. nov. (Carnivora, Canidae), from the Early Middle Pleistocene Deposits of Grotta Dei Fiori (Sardinia, Western Mediterranean) , 2015 .

[21]  D. Alba,et al.  The Endocranial Morphology of the Plio-Pleistocene Bone-Cracking Hyena Pliocrocuta perrieri: Behavioral Implications , 2015, Journal of Mammalian Evolution.

[22]  L. Werdelin,et al.  A critical review of African species of Eucyon (Mammalia; Carnivora; Canidae), with a new species from the Pliocene of the Woranso‐Mille Area, Afar Region, Ethiopia , 2015 .

[23]  B. Van Valkenburgh,et al.  Beyond the Sniffer: Frontal Sinuses in Carnivora , 2014, Anatomical record.

[24]  Guido Gerig,et al.  Morphometry of anatomical shape complexes with dense deformations and sparse parameters , 2014, NeuroImage.

[25]  E. Delson,et al.  40Ar/39Ar constraints on some French landmark Late Pliocene to Early Pleistocene large mammalian paleofaunas: Paleoenvironmental and paleoecological implications , 2014 .

[26]  Hong-hai Zhang,et al.  The complete mitochondrial genome and phylogenetic analysis of Nyctereutes procyonoides , 2012 .

[27]  Carl von Linné Systema Naturae: Per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis, , 2011 .

[28]  Myriam Boudadi-Maligne LES CANIS PLEISTOCENES DU SUD DE LA FRANCE : APPROCHE BIOSYSTEMATIQUE, EVOLUTIVE ET BIOCHRONOLOGIQUE , 2010 .

[29]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[30]  Z. J. Tseng,et al.  Cranial functional morphology of fossil dogs and adaptation for durophagy in Borophagus and Epicyon (Carnivora, Mammalia) , 2010, Journal of morphology.

[31]  W. J. Sanders,et al.  Cenozoic Mammals of Africa , 2010 .

[32]  M. Sotnikova,et al.  Dispersal of the Canini (Mammalia, Canidae: Caninae) across Eurasia during the Late Miocene to Early Pleistocene , 2010 .

[33]  L. Rook The wide ranging genus Eucyon Tedford & Qiu, 1996 (Mammalia, Carnivora, Canidae, Canini) in the Mio-Pliocene of the Old World , 2009 .

[34]  J. Morales,et al.  Eucyon debonisi n. sp., a new Canidae (Mammalia, Carnivora) from the latest Miocene of Venta del Moro (Valencia, Spain) , 2009 .

[35]  S. H. Long,et al.  Account of an Expedition from Pittsburgh to the Rocky Mountains , 2009 .

[36]  Xiaoming Wang,et al.  Phylogenetic Systematics of the North American Fossil Caninae (Carnivora: Canidae) , 2009 .

[37]  T. Huxley 3. On the Cranial and Dental Characters of the Canidæ. , 2009 .

[38]  G. Slater,et al.  Implications of predatory specialization for cranial form and function in canids , 2009 .

[39]  A. Arribas,et al.  Canis accitanus nov. sp., a new small dog (Canidae, Carnivora, Mammalia) from the Fonelas P-1 Plio-Pleistocene site (Guadix basin, Granada, Spain) , 2008 .

[40]  E. Ostrander,et al.  Lessons learned from the dog genome. , 2007, Trends in genetics : TIG.

[41]  L. Costeur,et al.  Small mammal (rodents and lagomorphs) European biogeography from the Late Oligocene to the mid Pliocene , 2007 .

[42]  M. Brunet,et al.  The oldest African fox (Vulpes riffautae n. sp., Canidae, Carnivora) recovered in late Miocene deposits of the Djurab desert, Chad , 2007, Naturwissenschaften.

[43]  S. Joshi,et al.  Template estimation form unlabeled point set data and surfaces for Computational Anatomy , 2006 .

[44]  J. de Vos,et al.  CYNOTHERIUM SARDOUS, AN INSULAR CANID (MAMMALIA: CARNIVORA) FROM THE PLEISTOCENE OF SARDINIA (ITALY), AND ITS ORIGIN , 2006 .

[45]  N. Spassov,et al.  EUCYON MARINAE SP. NOV. (MAMMALIA, CARNIVORA), A NEW CANID SPECIES FROM THE PLIOCENE OF MONGOLIA, WITH A REVIEW OF FORMS REFERABLE TO THE GENUS , 2006 .

[46]  Xiaoming Wang Zhanxiang, Tao, and Banyue: Early Pleistocene Mammalian Fauna from Longdan, Dongxiang, Gansu, China , 2006 .

[47]  James A. Cuff,et al.  Genome sequence, comparative analysis and haplotype structure of the domestic dog , 2005, Nature.

[48]  M. Hugueney Les grands rongeurs du Pliocène supérieur de Saint-Vallier (Drôme, France) : Castoridae, Hystricidae (Mammalia, Rodentia) , 2004 .

[49]  A. Harman,et al.  A Strong Correlation Exists between the Distribution of Retinal Ganglion Cells and Nose Length in the Dog , 2003, Brain, Behavior and Evolution.

[50]  R. Joeckel Unique frontal sinuses in fossil and living Hyaenidae (Mammalia, Carnivora): description and interpretation , 1998 .

[51]  Ó. Carranza-Castañeda,et al.  Late Tertiary canids from central Mexico , 1998, Journal of Paleontology.

[52]  L. Werdelin Constraint and adaptation in the bone-cracking canid Osteoborus (Mammalia: Canidae) , 1989, Paleobiology.

[53]  P. Chardin The fossils from locality 18 near Peking , 1940 .

[54]  E. T. Newton On some New Mammals from the Red and Norwich Crags , 1890, Quarterly Journal of the Geological Society of London.

[55]  Víctor Vinuesa Bone-cracking hyenas (carnivora, hyaenidae) from the european neogene and quaternary: taxonomy, paleobiology and evolution , 2018 .

[56]  Stefan Schlager,et al.  Morpho and Rvcg – Shape Analysis in R: R-Packages for Geometric Morphometrics, Shape Analysis and Surface Manipulations , 2017 .

[57]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[58]  A. Curtis A three-dimensional quantitative investigation of frontal sinus morphology and function in mammalian carnivores , 2014 .

[59]  A. Trouvé,et al.  Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. , 2012, Journal of human evolution.

[60]  N. López-martínez The Lagomorph Fossil Record and the Origin of the European Rabbit , 2008 .

[61]  Ł. Fostowicz-Frelik,et al.  First record of Trogontherium cuvieri (Mammalia, Rodentia) from the middle Pleistocene of Poland and review of the species , 2008 .

[62]  M. Sotnikova A new canid Nurocyon chonokhariensis gen. et sp. nov. (Canini, Canidae, Mammalia) from the Pliocene of Mongolia , 2007 .

[63]  G. Lyras,et al.  Adaptations of the Pleistocene island canid Cynot he rium sardous (Sardinia, Italy) for hunting small prey , 2006 .

[64]  J. G. Abascal,et al.  CARNIVORES FROM THE LATE MIOCENE AND BASAL PLIOCENE OF THE TUGEN HILLS, KENYA , 2005 .

[65]  B. Valkenburgh,et al.  Pack Hunting in Miocene Borophagine Dogs: Evidence from Craniodental Morphology and Body Size , 2003 .

[66]  O. Bar‐Yosef,et al.  Outside Africs: Middle Pleuistocene Lycaon from Hayonim cave, Israel , 2001 .

[67]  Wang Xiaoming,et al.  Phylogenetic systematics of the Borophaginae (Carnivora, Canidae). Bulletin of the AMNH ; no. 243 , 1999 .

[68]  R. Tedford,et al.  PHYLOGENETIC SYSTEMATICSOF THE BOROPHAGINAE(CARNIVORA: CANIDAE) , 1999 .

[69]  Xiao-Mei Wang Phylogenetic systematics of the Hesperocyoninae (Carnivora, Canidae). Bulletin of the AMNH ; no. 221 , 1994 .

[70]  L. Rook «Canis» monticinensis sp. nov., a new Canidae (Carnivora, Mammalia) from the late Messinian of Italy , 1992 .

[71]  M. Hugueney,et al.  Découverte de Trogontherium minus Newton 1890 (Rodentia: Castoridae) dans le Villafranchien inférieur de Perrier-Etouaires (Puy-de-Dôme, France): implications phylogénétiques , 1989 .

[72]  A. Berta Quaternary evolution and biogeography of the large South American Canidae (Mammalia, Carnivora) , 1988 .

[73]  P. Mein,et al.  Découvertes récentes de mammifères dans le Pliocène du Roussillon. Note préliminaire , 1984, Comptes rendus d'activités annuelles. Association régionale pour le développement des recherches de paléontologie et de préhistoire et des Amis du Muséum.

[74]  N. L. Martínez Revisión sistemática y biostratigráfica de los Lagomorfos (mainmalia) del Terciario y Cuaternaria inferior de España , 1976 .

[75]  W. Pei On the Carnivora from locality 1 of choukoutien , 1934 .

[76]  W. Matthew,et al.  Third contribution to the Snake Creek fauna. Bulletin of the AMNH ; v. 50, article 2. , 1924 .

[77]  W. Matthew,et al.  Contributions to the Snake Creek fauna ; with Notes upon the Pleistocene of western Nebraska, American Museum Expedition of 1916. Bulletin of the AMNH ; v. 38, article 7. , 1918 .

[78]  C. H. Merriam Description of a new fox from southern Cahfomia. Vulpes macrotis sp. nov. long-eared fox , 2022 .

[79]  Georg August Goldfuss,et al.  Die Säugthiere in Abbildungen nach der Natur, mit Beschreibungen / , 1840 .

[80]  T.,et al.  On the Cranial and Dental Characters of the Canidae , 2022 .