High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate.

We propose using a solitary kinoform-type spiral phase plate structure to generate an array of vortices located in a single beam. Kinoform-type spiral surfaces allow each wavelength component of the phase modulation value to be wrapped back to its 2 pi equivalent for optical vortices of high charge. This allows the surface-relief profiles of high-charge vortices to be microfabricated with the same physical height as spiral phase plates of unity-charged optical vortices. The m-charged optical vortex obtained interacts with the inherent coherent background, which changes the propagation dynamics of the optical vortex and splits the initial m charge into /m/ unity-charged optical vortices within the same beam. Compared to a hologram, a multistart spiral phase plate is more efficient in the use of available spatial frequencies and beam energy and also is computationally less demanding. Furthermore, using microfabrication techniques will allow for greater achievable tolerances in terms of smaller feature sizes.

[1]  Grover A. Swartzlander,et al.  Composite optical vortices , 2003 .

[2]  Nobuhito Toyama,et al.  Generation of a doughnut-shaped beam using a spiral phase plate , 2004 .

[3]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.

[4]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  A. V. Mamaev,et al.  Wave-front dislocations: topological limitations for adaptive systems with phase conjugation , 1983 .

[6]  Miles J. Padgett,et al.  Orbital angular momentum exchange in cylindrical-lens mode converters , 2002 .

[7]  Lai,et al.  Atom dynamics in multiple Laguerre-Gaussian beams. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  C. A. Hill,et al.  Optical helices and spiral interference fringes , 1994 .

[9]  Grover A. Swartzlander,et al.  Propagation dynamics of optical vortices , 1997 .

[10]  Mikhail V. Vasnetsov,et al.  Optics of light beams with screw dislocations , 1993 .

[11]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[13]  M. Nakatsuka,et al.  Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. , 2004 .

[14]  Andrew G. White,et al.  Interferometric Measurements of Phase Singularities in the Output of a Visible Laser , 1991 .

[15]  Norman R. Heckenberg,et al.  Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms , 1995 .

[16]  J. P. Woerdman,et al.  Half-integral spiral phase plates for optical wavelengths , 2004 .

[17]  H J Moon,et al.  Optical vortices produced with a nonspiral phase plate. , 1997, Applied optics.

[18]  Norman R. Heckenberg,et al.  Topological charge and angular momentum of light beams carrying optical vortices , 1997 .

[19]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[20]  Grover A. Swartzlander,et al.  EXPERIMENTAL OBSERVATION OF FLUIDLIKE MOTION OF OPTICAL VORTICES , 1997 .

[21]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[22]  Law,et al.  Optical vortex solitons observed in Kerr nonlinear media. , 1992, Physical review letters.

[23]  David G Grier,et al.  Modulated optical vortices. , 2003, Optics letters.

[24]  Kishan Dholakia,et al.  Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation , 2004 .

[25]  D. Tang,et al.  Phase-dependent helical pattern formation in a laser , 1995 .