The PLanetary extreme Ultraviolet Spectrometer Project

Spectroscopic observations in the vacuum (VUV, 115-200 nm) and extreme ultraviolet (EUV, 40-115 nm) is of fundamental importance in solar physics, in the physics of interstellar medium, in the study of planetary exospheres. The PLUS project is focused on the development of a high performance spectrograph for the observations of planetary exospheres in the 55-200 nm range. The instrument layout is based on a two channels (VUV/EUV) design. It will be characterized by improved detection limit, shorter observations integration time and unprecedented performance in terms of dynamic range. Such characteristics will be obtained thanks to the development and combination of two key technologies: high efficiency optical components optimized for each channel and high resolution/dynamic range solar blind photon counting detector. The photon counting detector will be based on a Micro-Channel Plate coupled with ROIC ASIC read out system.

[1]  D. Gell,et al.  INMS-derived composition of Titan's upper atmosphere: Analysis methods and model comparison , 2009 .

[2]  D. Garoli,et al.  Mirrors for space telescopes: degradation issues , 2020, Optics + Optoelectronics.

[3]  Supriya Chakrabarti,et al.  Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets , 2012 .

[4]  F. Leblanc,et al.  PHEBUS on Bepi-Colombo: Post-launch Update and Instrument Performance , 2020, Space Science Reviews.

[5]  David T. Young,et al.  Ion densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations , 2012 .

[6]  A. Hendrix,et al.  Ultraviolet observations of Phoebe from the Cassini UVIS , 2008 .

[7]  Sarah M. Horst,et al.  Titan's Atmosphere and Climate , 2017, 1702.08611.

[8]  P. Nicholson,et al.  Stellar occultation probes of the Uranian rings at 0.1 and 2.2 microns - A comparison of Voyager UVS and earth-based results , 1987 .

[9]  S. Alan Stern,et al.  ALICE: the ultraviolet imaging spectrograph aboard the New Horizons Pluto mission spacecraft , 2005, SPIE Optics + Photonics.

[10]  Francesca Gerlin,et al.  Effects of helium ion bombardment on metallic gold and iridium thin films , 2015 .

[11]  J. P. Dubois,et al.  SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere , 2007 .

[12]  Rick Raffanti,et al.  The Ultraviolet Spectrograph on NASA’s Juno Mission , 2017 .

[13]  David C. Slater,et al.  LAMP: The Lyman Alpha Mapping Project on NASA’s Lunar Reconnaissance Orbiter Mission , 2010 .

[14]  P. Lavvas,et al.  The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical–dynamical model of the thermosphere , 2012, 1210.1536.

[15]  M. Stevens,et al.  Molecular nitrogen and methane density retrievals from Cassini UVIS dayglow observations of Titan’s upper atmosphere , 2015 .

[16]  M. Bazzan,et al.  Morphological and Functional Modifications of Optical Thin Films for Space Applications Irradiated with Low-Energy Helium Ions. , 2018, ACS applied materials & interfaces.

[17]  D. Strobel,et al.  The atmosphere of Pluto as observed by New Horizons , 2016, Science.

[18]  L. Esposito,et al.  Cassini uvis observations of Saturns rings , 1998 .

[19]  J. Blamont,et al.  Ultraviolet Spectrometer Observations of Neptune and Triton , 1989, Science.

[20]  Giampiero Naletto,et al.  PHEBUS: A double ultraviolet spectrometer to observe Mercury's exosphere , 2010 .

[21]  Deborah A. Miller,et al.  Galileo orbiter ultraviolet observations of Jupiter aurora , 1998 .

[22]  Y. Yung,et al.  Composition of Titan's upper atmosphere from Cassini UVIS EUV stellar occultations , 2013 .

[23]  Lionel Wilson,et al.  EnVision: taking the pulse of our twin planet , 2012 .

[24]  M. Bazzan,et al.  Dependence of the damage in optical metal/dielectric coatings on the energy of ions in irradiation experiments for space qualification , 2021, Scientific Reports.