Geoacoustic Inversions of Horizontal and Vertical Line Array Acoustic Data From a Surface Ship Source of Opportunity

The application of an inversion methodology produces the first demonstration of a simultaneous solution for geoacoustic and source track parameters from acoustic data collected in a shallow-water, sandy sediment environment. Inversion solutions from data collected in the 2006 Shallow Water Experiment (SW06) are extracted from noise measurements of a surface ship source on an L-array. The methodology includes a screening algorithm to determine a set of frequencies for the inversion data. In addition, the methodology assesses the accuracy of the inversion solution and incorporates an estimation of parameter value uncertainties. The solution from the inversion of the horizontal component of the L-array data from the surface ship source before its closest point of approach (CPA) is used to construct modeled propagation loss for comparison with observed received level (RL) structure as the source departs from CPA. Inversion of the data from a single element in the vertical component of the L-array produces a solution that agrees with the solution obtained from the inversion of horizontal subaperture data. Also, modeled transmission loss (TL) structure obtained from the single-element inversion solution reproduces the depth dependence of the RL structure observed at other elements of the vertical component of the L-array.

[1]  David P Knobles,et al.  Geoacoustic inversion with ships as sources. , 2005, The Journal of the Acoustical Society of America.

[2]  N. Chapman,et al.  The impact of ocean sound speed variability on the uncertainty of geoacoustic parameter estimates. , 2009, The Journal of the Acoustical Society of America.

[3]  R. Koch,et al.  Geoacoustic inversions and localizations with adaptively beamformed data from a surface ship of opportunity source. , 2010, The Journal of the Acoustical Society of America.

[4]  N. R. Chapman,et al.  Workshop '97: Benchmarking for Geoacoustic Inversion in Shallow Water , 1998 .

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  Henry Cox,et al.  Robust adaptive beamforming , 2005, IEEE Trans. Acoust. Speech Signal Process..

[8]  S. Dosso Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach. , 2002, The Journal of the Acoustical Society of America.

[9]  Peter Gerstoft,et al.  Performance comparison between vertical and horizontal arrays for geoacoustic inversion , 2003 .

[10]  L. A. Thompson,et al.  Broadband sound propagation in shallow water and geoacoustic inversion. , 2000, The Journal of the Acoustical Society of America.

[11]  S. Glenn,et al.  Shallow Water '06: A Joint Acoustic Propagation/Nonlinear Internal Wave Physics Experiment , 2007 .

[12]  P. Gerstoft,et al.  Inversion for geometric and geoacoustic parameters in shallow water: Experimental results , 1995 .

[13]  William S. Hodgkiss,et al.  Mirages in shallow water matched‐field processing , 1995 .

[14]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[15]  David E. Grant,et al.  Geoacoustic inversion in range-dependent ocean environments using a plane wave reflection coefficient approach , 2004 .

[16]  Jonathan H. Gross,et al.  Cross‐spectral matrix estimation effects on adaptive beamforming , 1993 .

[17]  W.S. Hodgkiss,et al.  Detectability of low-level broad-band signals using adaptive matched-field processing with vertical aperture arrays , 2000, IEEE Journal of Oceanic Engineering.

[18]  Cristiano Soares,et al.  Environmental inversion using high-resolution matched-field processing. , 2007, The Journal of the Acoustical Society of America.

[19]  S. Dosso,et al.  Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data. , 2002, The Journal of the Acoustical Society of America.

[20]  S A Stotts A robust spatial filtering technique for multisource localization and geoacoustic inversion. , 2005, The Journal of the Acoustical Society of America.

[21]  David P. Knobles,et al.  A time series analysis of sound propagation in a strongly multipath shallow water environment with an adiabatic normal mode approach , 1996 .

[22]  James F. Lynch,et al.  A COMPARISON OF BROADBAND AND NARROW-BAND MODAL INVERSIONS FOR BOTTOM GEOACOUSTIC PROPERTIES AT A SITE NEAR CORPUS CHRISTI, TEXAS , 1991 .

[23]  Fallat,et al.  Hybrid geoacoustic inversion of broadband Mediterranean Sea data , 2000, The Journal of the Acoustical Society of America.

[24]  Henrik Schmidt,et al.  Nonlinear inversion for ocean‐bottom properties , 1992 .

[25]  Tracianne B Neilsen,et al.  An iterative implementation of rotated coordinates for inverse problems. , 2003, The Journal of the Acoustical Society of America.

[26]  J. Goff,et al.  Seabed acoustics of a sand ridge on the New Jersey continental shelf. , 2008, The Journal of the Acoustical Society of America.

[27]  Martin Musil,et al.  Range-dependent matched-field inversion of SWellEX-96 data using the downhill simplex algorithm , 1999 .