Linear complexity parallel algorithms for linear systems of equations with recursive structure

Abstract A method of derivation of parallel algorithms for ( N + 1) × ( N + 1) matrices with recursive structure is presented and applied to Toeplitz, Hankel, and other Toeplitz-like matrices. The derived algorithms, executed on O ( N ) parallel processors, require O ( N ) arithmetic operations per processor.

[1]  Å. Björck,et al.  Solution of Vandermonde Systems of Equations , 1970 .

[2]  C. Lanczos Applied Analysis , 1961 .

[3]  I. Koltracht,et al.  Numerical solution of integral equations, fast algorithms and Krein-Sobolev equation , 1985 .

[4]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[5]  Thomas Kailath,et al.  Efficient solution of linear systems of equations with recursive structure , 1986 .

[6]  George Cybenko,et al.  The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of Equations , 1980 .

[7]  Alston S. Householder,et al.  Handbook for Automatic Computation , 1960, Comput. J..

[8]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[11]  Adhemar Bultheel,et al.  Error analysis of incoming and outgoing schemes for the trigonometric moment problem , 1981 .

[12]  Robert Todd Gregory,et al.  A collection of matrices for testing computational algorithms , 1969 .

[13]  Jean-Marc Delosme,et al.  Highly concurrent computing structures for matrix arithmetic and signal processing , 1982, Computer.

[14]  L. Ljung,et al.  New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices , 1979 .

[15]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[16]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[17]  E. Bareiss Numerical solution of linear equations with Toeplitz and Vector Toeplitz matrices , 1969 .

[18]  Sun-Yuan Kung,et al.  A highly concurrent algorithm and pipeleined architecture for solving Toeplitz systems , 1983 .