Uniform consistency of the partitioning estimate under ergodic conditions
暂无分享,去创建一个
[1] M. Delecroix,et al. Nonparametric estimation of a regression function and its derivatives under an ergodic hypothesis , 1996 .
[2] S. Yakowitz. Nonparametric density and regression estimation for Markov sequences without mixing assumptions , 1989 .
[3] L. Tran. Nonparametric Function Estimation for Time Series by Local Average Estimators , 1993 .
[4] Wolfgang Härdle,et al. Nonparametric Curve Estimation from Time Series , 1989 .
[5] Wolfgang Härdle,et al. Strong Uniform Convergence Rates in Robust Nonparametric Time Series Analysis and Prediction: Kernel , 1986 .
[6] C. Withers. Central Limit Theorems for dependent variables. I , 1981 .
[7] Donald W. K. Andrews. NON-STRONG MIXING AUTOREGRESSIVE PROCESSES , 1984 .
[8] G. Roussas. Nonparametric regression estimation under mixing conditions , 1990 .
[9] D. Bosq. Nonparametric Prediction for Unbounded Almost Stationary Processes , 1991 .
[10] R. Ash,et al. Topics in stochastic processes , 1975 .
[11] L. Györfi,et al. PARTITIONING-ESTIMATES OF A REGRESSION FUNCTION UNDER RANDOM CENSORING , 1995 .
[12] R. Olshen,et al. Consistent nonparametric regression from recursive partitioning schemes , 1980 .
[13] Y. Truong. Robust nonparametric regression in time series , 1992 .
[14] N. Laib,et al. Estimation non paramétrique robuste de la fonction de régression pour des observations ergodiques , 1996 .
[15] Tuan Pham,et al. Some mixing properties of time series models , 1985 .
[16] Related Topics,et al. Nonparametric functional estimation and related topics , 1991 .
[17] L. Györfi. Universal Consistencies of a Regression Estimate for Unbounded Regression Functions , 1991 .
[18] M. Delecroix,et al. Sur l'estimation de la densité d'observations ergodiques , 1991 .
[19] C. J. Stone,et al. Nonparametric function estimation involving time series , 1992 .
[20] N. Laïb,et al. A weak invariance principle for cumulated functionals of the regressogram estimator with dependent data , 1994 .
[21] R. Olshen,et al. Almost surely consistent nonparametric regression from recursive partitioning schemes , 1984 .
[22] G. Lugosi,et al. Kernel density estimation from ergodic sample is not universally consistent , 1992 .
[23] Naâmane Laïb. Exponential-type inequalities for martingale difference sequences. Application to nonparametric regression estimation , 1999 .
[24] L. Györfi. Strong consistent density estimate from ergodic sample , 1981 .
[25] D. Newton,et al. ERGODIC THEOREMS (de Gruyter Studies in Mathematics 6) , 1986 .
[26] László Györfi,et al. The L, and L, Strong Consistency Kernel Density Estimation of Recursive from Dependent Samples , 1990 .
[27] B. Silverman,et al. Weak and strong uniform consistency of kernel regression estimates , 1982 .
[28] P. Vieu,et al. Data-Driven Bandwidth Choice for Density Estimation Based on Dependent Data , 1990 .
[29] László Györfi,et al. Limits to Consistent On-Line Forecasting for Ergodic Time Series , 1998, IEEE Trans. Inf. Theory.