Uniform consistency of the partitioning estimate under ergodic conditions

We establish the uniform almost sure convergence of the partitioning estimate, which is a histogram-like mean regression function estimate, under ergodic conditions for a stationary and unbounded process. The main application of our results concerns time series analysis and prediction in the Markov processes case.

[1]  M. Delecroix,et al.  Nonparametric estimation of a regression function and its derivatives under an ergodic hypothesis , 1996 .

[2]  S. Yakowitz Nonparametric density and regression estimation for Markov sequences without mixing assumptions , 1989 .

[3]  L. Tran Nonparametric Function Estimation for Time Series by Local Average Estimators , 1993 .

[4]  Wolfgang Härdle,et al.  Nonparametric Curve Estimation from Time Series , 1989 .

[5]  Wolfgang Härdle,et al.  Strong Uniform Convergence Rates in Robust Nonparametric Time Series Analysis and Prediction: Kernel , 1986 .

[6]  C. Withers Central Limit Theorems for dependent variables. I , 1981 .

[7]  Donald W. K. Andrews NON-STRONG MIXING AUTOREGRESSIVE PROCESSES , 1984 .

[8]  G. Roussas Nonparametric regression estimation under mixing conditions , 1990 .

[9]  D. Bosq Nonparametric Prediction for Unbounded Almost Stationary Processes , 1991 .

[10]  R. Ash,et al.  Topics in stochastic processes , 1975 .

[11]  L. Györfi,et al.  PARTITIONING-ESTIMATES OF A REGRESSION FUNCTION UNDER RANDOM CENSORING , 1995 .

[12]  R. Olshen,et al.  Consistent nonparametric regression from recursive partitioning schemes , 1980 .

[13]  Y. Truong Robust nonparametric regression in time series , 1992 .

[14]  N. Laib,et al.  Estimation non paramétrique robuste de la fonction de régression pour des observations ergodiques , 1996 .

[15]  Tuan Pham,et al.  Some mixing properties of time series models , 1985 .

[16]  Related Topics,et al.  Nonparametric functional estimation and related topics , 1991 .

[17]  L. Györfi Universal Consistencies of a Regression Estimate for Unbounded Regression Functions , 1991 .

[18]  M. Delecroix,et al.  Sur l'estimation de la densité d'observations ergodiques , 1991 .

[19]  C. J. Stone,et al.  Nonparametric function estimation involving time series , 1992 .

[20]  N. Laïb,et al.  A weak invariance principle for cumulated functionals of the regressogram estimator with dependent data , 1994 .

[21]  R. Olshen,et al.  Almost surely consistent nonparametric regression from recursive partitioning schemes , 1984 .

[22]  G. Lugosi,et al.  Kernel density estimation from ergodic sample is not universally consistent , 1992 .

[23]  Naâmane Laïb Exponential-type inequalities for martingale difference sequences. Application to nonparametric regression estimation , 1999 .

[24]  L. Györfi Strong consistent density estimate from ergodic sample , 1981 .

[25]  D. Newton,et al.  ERGODIC THEOREMS (de Gruyter Studies in Mathematics 6) , 1986 .

[26]  László Györfi,et al.  The L, and L, Strong Consistency Kernel Density Estimation of Recursive from Dependent Samples , 1990 .

[27]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[28]  P. Vieu,et al.  Data-Driven Bandwidth Choice for Density Estimation Based on Dependent Data , 1990 .

[29]  László Györfi,et al.  Limits to Consistent On-Line Forecasting for Ergodic Time Series , 1998, IEEE Trans. Inf. Theory.