Analysis of Reference Error in High-Speed SAR ADCs With Capacitive DAC

The high-speed successive-approximation-register (SAR) analog-to-digital converters (ADCs) rely on the switched capacitive digital-to-analog converter (CDAC) to perform the fast transition, which causes voltage ripples at the output of the reference circuits. Such ripples lead to the reference error that eventually prolongs the time for DAC settling. To minimize such error with a short available time, it either demands a power-hungry reference buffer or large die area for the decoupling. In this paper, we offer a comprehensive analysis of the reference errors in SAR ADCs with a practical reference network circuit (RNC) in consideration. A circuit model is developed in order to quantify the error amplitude for the critical DAC settling condition. Based on the proposed model, the settling behavior of the DAC with reference buffer can be precisely characterized, leading to a better understanding about the design tradeoff of the RNC. Finally, the developed model is verified by both circuit level simulations and measurement results.

[1]  Chi-Hang Chan,et al.  60-dB SNDR 100-MS/s SAR ADCs With Threshold Reconfigurable Reference Error Calibration , 2017, IEEE Journal of Solid-State Circuits.

[2]  Ying-Zu Lin,et al.  A 8.2-mW 10-b 1.6-GS/s 4× TI SAR ADC with fast reference charge neutralization and background timing-skew calibration in 16-nm CMOS , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[3]  R.W. Dutton,et al.  Impact of Scaling on Analog Performance and Associated Modeling Needs , 2006, IEEE Transactions on Electron Devices.

[4]  Rui Paulo Martins,et al.  Thermal and Reference Noise Analysis of Time-Interleaving SAR and Partial-Interleaving Pipelined-SAR ADCs , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Yusuf Leblebici,et al.  Implementation of Low-Power 6–8 b 30–90 GS/s Time-Interleaved ADCs With Optimized Input Bandwidth in 32 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[6]  Yusuf Leblebici,et al.  A 110 mW 6 bit 36 GS/s interleaved SAR ADC for 100 GBE occupying 0.048 mm2 in 32 nm SOI CMOS , 2014, 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[7]  Ron Kapusta,et al.  A 16-bit 16-MS/s SAR ADC With On-Chip Calibration in 55-nm CMOS , 2018, IEEE Journal of Solid-State Circuits.

[8]  Chih-Cheng Hsieh,et al.  A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[9]  Jason Hu,et al.  An 11.5-ENOB 100-MS/s 8mW dual-reference SAR ADC in 28nm CMOS , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[10]  Wei-Hsin Tseng,et al.  A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters , 2016, IEEE Journal of Solid-State Circuits.

[11]  Behzad Razavi,et al.  Analysis of Metastability in Pipelined ADCs , 2014, IEEE Journal of Solid-State Circuits.

[12]  Robert W. Brodersen,et al.  A 1 GS/s 6 Bit 6.7 mW Successive Approximation ADC Using Asynchronous Processing , 2010, IEEE Journal of Solid-State Circuits.

[13]  Ron Kapusta,et al.  A 16-bit 16MS/s SAR ADC with on-chip calibration in 55nm CMOS , 2017, 2017 Symposium on VLSI Circuits.

[14]  Eitake Ibaragi,et al.  A 14b 80 MS/s SAR ADC With 73.6 dB SNDR in 65 nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[15]  Sang-Hyun Cho,et al.  A 550-$\mu\hbox{W}$ 10-b 40-MS/s SAR ADC With Multistep Addition-Only Digital Error Correction , 2011, IEEE Journal of Solid-State Circuits.

[16]  Ron Kapusta,et al.  A 16 bit linear passive-charge-sharing SAR ADC in 55nm CMOS , 2016, 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[17]  Rui Paulo Martins,et al.  Metastablility in SAR ADCs , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[18]  Po-Chiun Huang,et al.  A 0.003 mm$^{2}$ 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS With Digital Error Correction and Correlated-Reversed Switching , 2015, IEEE Journal of Solid-State Circuits.

[19]  Ali Sheikholeslami Miller's Theorem [Circuit Intuitions] , 2015, IEEE Solid-State Circuits Magazine.

[20]  Shouli Yan,et al.  A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13μm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[21]  Franco Maloberti,et al.  A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.

[22]  Jae-Won Nam,et al.  A 12-bit 1.6 GS/s interleaved SAR ADC with dual reference shifting and interpolation achieving 17.8 fJ/conv-step in 65nm CMOS , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[23]  Ka Nang Leung,et al.  Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Chun-Cheng Liu 27.4 A 0.35mW 12b 100MS/s SAR-assisted digital slope ADC in 28nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[25]  Chun-Cheng Liu,et al.  A 10-bit 320-MS/s low-cost SAR ADC for IEEE 802.11ac applications in 20-nm CMOS , 2014, 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[26]  Shouli Yan,et al.  A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13 µm CMOS , 2009, IEEE J. Solid State Circuits.