Sharp spectral estimates in domains of infinite volume

We consider the Dirichlet Laplace operator on open, quasi-bounded domains of infinite volume. For such domains semiclassical spectral estimates based on the phase-space volume - and therefore on the volume of the domain - must fail. Here we present a method how one can nevertheless prove uniform bounds on eigenvalues and eigenvalue means which are sharp in the semiclassical limit. We give examples in horn-shaped regions and so-called spiny urchins. Some results are extended to Schr\"odinger operators defined on quasi-bounded domains with Dirichlet boundary conditions.

[1]  Markus Stroppel,et al.  Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras , 2010, 1012.0502.

[2]  Yu Safarov,et al.  The Asymptotic Distribution of Eigenvalues of Partial Differential Operators , 1996 .

[3]  A. Melas A lower bound for sums of eigenvalues of the Laplacian , 2002 .

[4]  Markus Stroppel,et al.  Polarities of Schellhammer Planes , 2011 .

[5]  Ari Laptev,et al.  Geometrical Versions of improved Berezin-Li-Yau Inequalities , 2010, 1010.2683.

[6]  V. Ya. Ivrii,et al.  Second term of the spectral asymptotic expansion of the Laplace - Beltrami operator on manifolds with boundary , 1980 .

[7]  Barbara Kaltenbacher,et al.  On convergence of local averaging regression function estimates for the regularization of inverse problems , 2011 .

[8]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[9]  T. Merkle,et al.  Improved Berezin-Li-Yau inequalities with a remainder term , 2007 .

[10]  J. Weidmann Lineare Operatoren in Hilberträumen , 2000 .

[11]  G. V. Rozenblyum The computation of the spectral asymptotics for the Laplace operator in domains of infinite measure , 1976 .

[12]  Rupert L. Frank,et al.  Eigenvalue estimates for Schrödinger operators on metric trees , 2007, 0710.5500.

[13]  The stability of matter , 1976 .

[14]  Adam Krzyżak,et al.  Estimation of the essential supremum of a regression function , 2011 .

[15]  Sharp Lieb-Thirring inequalities in high dimensions , 1999, math-ph/9903007.

[16]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[17]  F. Berezin COVARIANT AND CONTRAVARIANT SYMBOLS OF OPERATORS , 1972 .

[18]  T. Merkle,et al.  Universal Bounds for Traces of the Dirichlet Laplace Operator , 2009 .

[19]  Reinhard Racke,et al.  Elastic and electro-magnetic waves in infinite waveguides , 2008 .

[20]  M. Solomjak,et al.  Spectral theory of selfadjoint operators in Hilbert space , 1987 .

[21]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[22]  Felix Effenberger,et al.  Stacked polytopes and tight triangulations of manifolds , 2009, J. Comb. Theory, Ser. A.

[23]  Marcel Griesemer,et al.  On the Atomic Photoeffect in Non-relativistic QED , 2009, 0910.1809.

[24]  Ulrich Brehm,et al.  Lattice triangulations of E 3 and of the 3-torus , 2009 .

[25]  Wolfgang Kimmerle,et al.  On Torsion Subgroups in Integral Group Rings of Finite Groups , 2011 .

[26]  W. Harro,et al.  Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps , 2009 .

[27]  E. Lieb,et al.  The Stability of Matter in Quantum Mechanics , 2009 .

[28]  Weighted Supermembrane Toy Model , 2009, 0904.4517.

[29]  M. Berg On the spectral counting function for the Dirichlet Laplacian , 1992 .

[30]  P. Lemberger Segregation in the Falicov-Kimball model , 1992 .

[31]  B. Simon,et al.  Nonclassical eigenvalue asymptotics , 1983 .

[32]  Adventures of the coupled Yang-Mills oscillators: I. Semiclassical expansion , 2005, quant-ph/0506214.

[33]  Wolfgang Kimmerle,et al.  Finite groups of units and their composition factors in the integral group rings of the groups PSL(2, q) , 2008, 0810.0186.

[34]  Elliott H. Lieb The classical limit of quantum spin systems , 1973 .

[35]  T. Merkle,et al.  Conformally closed Poincaré-Einstein metrics with intersecting scale singularities , 2008 .

[36]  A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator , 1998, math-ph/9806012.

[37]  Adventures of the coupled Yang–Mills oscillators: II. YM–Higgs quantum mechanics , 2005, quant-ph/0506239.

[38]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[39]  B. Simon,et al.  Spectral properties of Neumann Laplacian of horns , 1992 .

[40]  M. Berg Dirichlet-Neumann bracketing for horn-shaped regions , 1992 .

[41]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[42]  M. Berg,et al.  Asymptotics for the spectrum of the Dirichlet Laplacian on horn-shaped regions , 2001 .

[43]  R. Courant,et al.  Methoden der mathematischen Physik , .

[44]  E. Lieb,et al.  On semi-classical bounds for eigenvalues of Schrödinger operators , 1978 .

[45]  M. Lianantonakis On the eigenvalue counting function for weighted Laplace-Beltrami operators , 2000 .

[46]  G. V. Rozenbljum ON THE EIGENVALUES OF THE FIRST BOUNDARY VALUE PROBLEM IN UNBOUNDED DOMAINS , 1972 .

[47]  Hynek Kovařík,et al.  Two-Dimensional Berezin-Li-Yau Inequalities with a Correction Term , 2008, 0802.2792.

[48]  Non‐classical Eigenvalue Asymptotic for Elliptic Operators of Second Order in Unbounded Trumpet‐shaped Domains with Neumann Boundary Conditions , 1993 .

[49]  M. Berg On the spectrum of the Dirichlet Laplacian for horn-shaped regions in Rn with infinite volume , 1984 .

[50]  Ari Laptev,et al.  Dirichlet and Neumann Eigenvalue Problems on Domains in Euclidean Spaces , 1997 .