Ring Hulls of Semiprime Homomorphic Images
暂无分享,去创建一个
[1] Gary F. Birkenmeir. Idempotents and completely semiprime ideals , 1983 .
[2] E. Walker,et al. Quotient categories and rings of quotient , 1972 .
[3] Joachim Lambek,et al. Lectures on Rings and Modules , 1976 .
[4] K. Goodearl. Ring Theory: Nonsingular Rings and Modules , 1976 .
[5] H. Heatherly,et al. Triangular Matrix Representations , 2000 .
[6] C. Faith. Maximal quotient rings , 1965 .
[7] G. Birkenmeier. When Does a Supernilpotent Radical Essentially Split Off , 1995 .
[8] L. Fuchs,et al. THE FULLY INVARIANT EXTENDING PROPERTY FOR ABELIAN GROUPS , 2001 .
[9] G. Birkenmeier,et al. MODULES WITH FULLY INVARIANT SUBMODULES ESSENTIAL IN FULLY INVARIANT SUMMANDS , 2002 .
[10] Bruno J. Müller,et al. Modules in Which Every Fully Invariant Submodule is Essential in a Direct Summand , 2002 .
[11] Martin Mathieu,et al. Local Multipliers of C*-Algebras , 2002 .
[12] W. Clark. Twisted matrix units semigroup algebras , 1967 .
[13] G. Birkenmeier,et al. Quasi-Baer ring extensions and biregrular rings , 2000, Bulletin of the Australian Mathematical Society.
[14] G. Birkenmeier,et al. Ring hulls and applications , 2006 .
[15] G. Pedersen. Approximating derivations on ideals ofC*-algebras , 1978 .
[16] G. Birkenmeier. Decompositions of Baer-like rings , 1992 .
[17] A. Mewborn. Regular rings and Baer rings , 1971 .
[18] G. Birkenmeier,et al. The structure of rings of quotients , 2009 .
[19] George A. Elliott,et al. Automorphisms determined by multipliers on ideals of a C∗-algebra , 1976 .
[20] G. Birkenmeier,et al. Hulls of semiprime rings with applications to C∗-algebras , 2009 .