Rational design of MXene-based films for energy storage: Progress, prospects

[1]  Dongbin Xiong,et al.  Stepwise Intercalation-Conversion-Intercalation Sodiation Mechanism in CuInS2 Prompting Sodium Storage Performance , 2020 .

[2]  Y. Gogotsi,et al.  Tracking ion intercalation into layered Ti3C2 MXene films across length scales , 2020 .

[3]  R. Klie,et al.  Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes , 2020, Science.

[4]  P. Simon,et al.  Modifications of MXene layers for supercapacitors , 2020, Nano Energy.

[5]  K. Cen,et al.  High-Mass-Loading Porous Ti3C2Tx Films for Ultrahigh-Rate Pseudocapacitors , 2020 .

[6]  V. Nicolosi,et al.  3D MXene Architectures for Efficient Energy Storage and Conversion , 2020, Advanced Functional Materials.

[7]  B. Van der Bruggen,et al.  An MXene-based membrane for molecular separation , 2020 .

[8]  André D. Taylor,et al.  Layer-by-Layer Assembly of Two-Dimensional Materials: Meticulous Control on the Nanoscale , 2020 .

[9]  Huichao Liu,et al.  Mixed analogous heterostructure based on MXene and prussian blue analog derivative for high-performance flexible energy storage , 2020 .

[10]  Yongjiu Lei,et al.  Review of MXene electrochemical microsupercapacitors , 2020 .

[11]  F. Du,et al.  Flexible Nb4C3Tx Film with Large Interlayer Spacing for High‐Performance Supercapacitors , 2020, Advanced Functional Materials.

[12]  Xungai Wang,et al.  Scalable Manufacturing of Free‐Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity , 2020, Advanced materials.

[13]  Xin-Bing Cheng,et al.  Rational design of two-dimensional nanomaterials for lithium–sulfur batteries , 2020 .

[14]  Qiu Jiang,et al.  MXene Printing and Patterned Coating for Device Applications , 2020, Advanced materials.

[15]  K. Ye,et al.  Porous and free-standing Ti3C2T -RGO film with ultrahigh gravimetric capacitance for supercapacitors , 2020 .

[16]  Hui Wang,et al.  Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries , 2020 .

[17]  C. Zhang,et al.  Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screen‐Printed Micro‐Supercapacitors , 2020, Advanced materials.

[18]  Peng Zhang,et al.  Flexible Si@C Electrode with Excellent Stability Employing MXene as a Multi-functional Binder for Lithium Ion Batteries. , 2020, ChemSusChem.

[19]  Baohua Li,et al.  Boosting Sodium Storage in 2D Phosphorene/Ti3C2Tx MXene Nanoarchitectures with Stable Fluorinated Interphase. , 2020, ACS nano.

[20]  V. Natu,et al.  2D Ti3C2Tz MXene Synthesized By Water-Free Etching of Ti3AlC2 in Polar Organic Solvents , 2020, ECS Meeting Abstracts.

[21]  Kai Han,et al.  Ultra-lightweight Ti3C2T MXene modified separator for Li–S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation , 2020 .

[22]  Y. Gogotsi,et al.  Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2T -MXene membrane capacitive deionization system , 2020 .

[23]  G. Chen,et al.  Supercapatteries as High-Performance Electrochemical Energy Storage Devices , 2020, Electrochemical Energy Reviews.

[24]  A. Manthiram,et al.  Lithium-Sulfur Batteries: Attaining the Critical Metrics , 2020, Joule.

[25]  Quan-hong Yang,et al.  The Assembly of MXenes from 2D to 3D , 2020, Advanced science.

[26]  Han Lin,et al.  MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications , 2020 .

[27]  J. Caro,et al.  Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater , 2020, Nature Sustainability.

[28]  S. Qiao,et al.  Unveiling the Advances of 2D Materials for Li/Na-S Batteries Experimentally and Theoretically , 2020 .

[29]  Yanjie Hu,et al.  MXene interlayer anchored Fe3O4 nanocrystals for ultrafast Li-ion batteries , 2020 .

[30]  W. Que,et al.  Methanol and Diethanolamine Assisted Synthesis of Flexible Nitrogen-Doped Ti3C2 (MXene) Film for Ultrahigh Volumetric Performance Supercapacitor Electrodes , 2020 .

[31]  G. He,et al.  Two-dimensional nanochannel membranes for molecular and ionic separations. , 2020, Chemical Society reviews.

[32]  Zhimin Xie,et al.  A Compact MXene Film with Folded Structure for Advanced Supercapacitor Electrode Material , 2020 .

[33]  C. Zhang,et al.  Two‐dimensional MXenes for lithium‐sulfur batteries , 2020, InfoMat.

[34]  Shubin Yang,et al.  Single Zinc Atoms Immobilized on MXene (Ti3C2Clx) Layers toward Dendrite-Free Lithium Metal Anodes. , 2020, ACS nano.

[35]  J. Orangi,et al.  3D Printing of Additive-Free 2D Ti3C2Tx (MXene) Ink for Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities. , 2019, ACS nano.

[36]  Y. Gogotsi,et al.  An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. , 2019, Small.

[37]  C. Jo,et al.  A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics. , 2019, Angewandte Chemie.

[38]  P. He,et al.  Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response , 2019 .

[39]  Peng Zhang,et al.  Flexible 3D Porous MXene Foam for High-Performance Lithium-Ion Batteries. , 2019, Small.

[40]  H. Yang,et al.  Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage , 2019 .

[41]  Yi Cui,et al.  Energy storage: The future enabled by nanomaterials , 2019, Science.

[42]  Haodong Shi,et al.  Conducting and Lithiophilic MXene/Graphene Frameworks for High-Capacity, Dendrite-Free Lithium-Metal Anodes. , 2019, ACS nano.

[43]  Yingjin Wei,et al.  Lithiophilic Three-Dimensional Porous Ti3C2TX-rGO Membrane as a Stable Scaffold for Safe Alkali Metal (Li or Na) Anodes. , 2019, ACS nano.

[44]  Qingtao Wang,et al.  Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. , 2019, Journal of colloid and interface science.

[45]  Jinkui Feng,et al.  Room-Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binder-Free Anode for Next-Generation Lithium-Ion Batteries. , 2019, Small.

[46]  R. P. Pandey,et al.  Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes) , 2019, Materials Today.

[47]  Huichao Liu,et al.  Antimonene Engineered Highly Deformable Freestanding Electrode with Extraordinarily Improved Energy Storage Performance , 2019, Advanced Energy Materials.

[48]  Yayuan Liu,et al.  Lithium Metal Anode Materials Design: Interphase and Host , 2019, Electrochemical Energy Reviews.

[49]  Jiajia Huang,et al.  Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium–sulfur batteries , 2019, Electrochimica Acta.

[50]  Y. Gogotsi,et al.  MXene‐Bonded Flexible Hard Carbon Film as Anode for Stable Na/K‐Ion Storage , 2019, Advanced Functional Materials.

[51]  Fugen Sun,et al.  In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries , 2019, Chemical Engineering Journal.

[52]  Bo Chen,et al.  Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage , 2019, Advanced materials.

[53]  P. Taberna,et al.  A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte , 2019, Nature Materials.

[54]  Q. Wang,et al.  Direct Laser Etching Free‐Standing MXene‐MoS2 Film for Highly Flexible Micro‐Supercapacitor , 2019, Advanced Materials Interfaces.

[55]  Pengbo Wan,et al.  Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding , 2019, Nano-micro letters.

[56]  Haihui Wang,et al.  Self-Crosslinked MXene (Ti3C2Tx) Membranes with Good Anti-Swelling Property for Monovalent Metal Ions Exclusion. , 2019, ACS nano.

[57]  N. Zhang,et al.  Microstructure and surface control of MXene films for water purification , 2019, Nature Sustainability.

[58]  Hee‐Tae Jung,et al.  Interfacial assembly of ultrathin, functional MXene films. , 2019, ACS applied materials & interfaces.

[59]  Micah J. Green,et al.  Antioxidants Unlock Shelf-Stable Ti3C2T (MXene) Nanosheet Dispersions , 2019, Matter.

[60]  Hong-qi Ye,et al.  Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries , 2019, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[61]  Huanting Wang,et al.  2D Nanosheets and Their Composite Membranes for Water, Gas, and Ion Separation , 2019, Angewandte Chemie.

[62]  Guoxiu Wang,et al.  Nanoengineering of 2D MXene-Based Materials for Energy Storage Applications. , 2019, Small.

[63]  A. Grace,et al.  Ta4C3 MXene as supercapacitor electrodes , 2019, Journal of Alloys and Compounds.

[64]  Y. Gogotsi,et al.  MXene-conducting polymer electrochromic microsupercapacitors , 2019, Energy Storage Materials.

[65]  M. N. Hedhili,et al.  MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery , 2019, Nano Energy.

[66]  Ya‐Xia Yin,et al.  Interfacial design for lithium–sulfur batteries: From liquid to solid , 2019, EnergyChem.

[67]  X. Duan,et al.  Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration , 2019, Science.

[68]  M. Beidaghi,et al.  Layer-by-layer self-assembly of pillared two-dimensional multilayers , 2019, Nature Communications.

[69]  Xitian Zhang,et al.  Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor , 2019, Electrochimica Acta.

[70]  Yi Cui,et al.  Challenges and opportunities towards fast-charging battery materials , 2019, Nature Energy.

[71]  Q. Yan,et al.  Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage. , 2019, Small.

[72]  Xianjie Liu,et al.  Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors , 2019, Nano Energy.

[73]  Y. Gogotsi,et al.  On‐Chip MXene Microsupercapacitors for AC‐Line Filtering Applications , 2019, Advanced Energy Materials.

[74]  Conor P. Cullen,et al.  A Robust, Freestanding MXene‐Sulfur Conductive Paper for Long‐Lifetime Li–S Batteries , 2019, Advanced Functional Materials.

[75]  Haitao Huang,et al.  Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-dimensional MXenes as Multifunctional Energy Materials. , 2019, Journal of the American Chemical Society.

[76]  Lirong Zheng,et al.  Cold pressing-built microreactors to thermally manipulate microstructure of MXene film as an anode for high-performance lithium-ion batteries , 2019, Electrochimica Acta.

[77]  Qiang Zhao,et al.  Interlayer Hydrogen-Bonded Metal Porphyrin Frameworks/MXene Hybrid Film with High Capacitance for Flexible All-Solid-State Supercapacitors. , 2019, Small.

[78]  Yajie Liu,et al.  Approaching high-performance potassium-ion batteries via advanced design strategies and engineering , 2019, Science Advances.

[79]  Peng Zhang,et al.  2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries. , 2019, Nanoscale.

[80]  J. Coleman,et al.  Additive-free MXene inks and direct printing of micro-supercapacitors , 2019, Nature Communications.

[81]  X. Bao,et al.  Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density , 2019, Journal of Materials Chemistry A.

[82]  Y. Gogotsi,et al.  High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis , 2019, Chemistry of Materials.

[83]  G. Cui,et al.  Additive-Assisted Novel Dual-Salt Electrolyte Addresses Wide Temperature Operation of Lithium-Metal Batteries. , 2019, Small.

[84]  Shichao Wu,et al.  Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO2‐MXene Heterostructures for Lithium–Sulfur Batteries , 2019, Advanced Energy Materials.

[85]  Guoxiu Wang,et al.  MXene‐Based Composites: Synthesis and Applications in Rechargeable Batteries and Supercapacitors , 2019, Advanced Materials Interfaces.

[86]  Zhubing Xiao,et al.  Ultrafine Ti3C2 MXene Nanodots-Interspersed Nanosheet for High-Energy-Density Lithium-Sulfur Batteries. , 2019, ACS nano.

[87]  Chang E. Ren,et al.  Scalable Manufacturing of Large and Flexible Sheets of MXene/Graphene Heterostructures , 2019, Advanced Materials Technologies.

[88]  Y. Gogotsi,et al.  Electrochromic Effect in Titanium Carbide MXene Thin Films Produced by Dip‐Coating , 2019, Advanced Functional Materials.

[89]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[90]  Jiajie Liang,et al.  Hydrous RuO2‐Decorated MXene Coordinating with Silver Nanowire Inks Enabling Fully Printed Micro‐Supercapacitors with Extraordinary Volumetric Performance , 2019, Advanced Energy Materials.

[91]  Zhi Yang,et al.  Synchronous Gains of Areal and Volumetric Capacities in Lithium-Sulfur Batteries Promised by Flower-like Porous Ti3C2T x Matrix. , 2019, ACS nano.

[92]  Yuan Tian,et al.  Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries. , 2019, ACS applied materials & interfaces.

[93]  Xiaolong Li,et al.  Engineering 3D Ion Transport Channels for Flexible MXene Films with Superior Capacitive Performance , 2019, Advanced Functional Materials.

[94]  Canhui Lu,et al.  Ultrathin MXene/Calcium Alginate Aerogel Film for High‐Performance Electromagnetic Interference Shielding , 2019, Advanced Materials Interfaces.

[95]  Jianqun Yang,et al.  Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance , 2019, Electrochimica Acta.

[96]  Guihua Yu,et al.  A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human-Machine Interfacing. , 2019, Nano letters.

[97]  Jean Le Bideau,et al.  Challenges and prospects of 3D micro-supercapacitors for powering the internet of things , 2019, Energy & Environmental Science.

[98]  S. Du,et al.  Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. , 2019, Journal of the American Chemical Society.

[99]  V. Mochalin,et al.  Hydrolysis of 2D Transition-Metal Carbides (MXenes) in Colloidal Solutions. , 2019, Inorganic chemistry.

[100]  Jiangwei Wang,et al.  In situ atomistic observation of disconnection-mediated grain boundary migration , 2019, Nature Communications.

[101]  Xin-Bing Cheng,et al.  Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes , 2019, Chem.

[102]  Micah J. Green,et al.  Water Sorption in MXene/Polyelectrolyte Multilayers for Ultrafast Humidity Sensing , 2019, ACS Applied Nano Materials.

[103]  Y. Gogotsi,et al.  MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors , 2019, Joule.

[104]  V. Nicolosi,et al.  Graphene and MXene-based transparent conductive electrodes and supercapacitors , 2019, Energy Storage Materials.

[105]  M. Beidaghi,et al.  Assembling 2D MXenes into Highly Stable Pseudocapacitive Electrodes with High Power and Energy Densities , 2018, Advanced materials.

[106]  Ling-bo Qu,et al.  Self-supporting Ti3C2Tx foam/S cathodes with high sulfur loading for high-energy-density lithium-sulfur batteries. , 2018, Nanoscale.

[107]  Yang Zhao,et al.  Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes , 2018, Nano Energy.

[108]  P. Webley,et al.  Two-dimensional nanosheet-based gas separation membranes , 2018 .

[109]  Y. Gogotsi,et al.  Thermally Reduced Graphene/MXene Film for Enhanced Li-ion Storage. , 2018, Chemistry.

[110]  C. Carrero,et al.  Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance , 2018 .

[111]  Jiayan Luo,et al.  MXene Aerogel Scaffolds for High-Rate Lithium Metal Anodes. , 2018, Angewandte Chemie.

[112]  Xiaogang Zhang,et al.  MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries , 2018, Chemical Engineering Journal.

[113]  A. Amiri,et al.  Promoting Role of MXene Nanosheets in Biomedical Sciences: Therapeutic and Biosensing Innovations , 2018, Advanced healthcare materials.

[114]  Xiaodong Zhu,et al.  Hybrid Architectures based on 2D MXenes and Low-Dimensional Inorganic Nanostructures: Methods, Synergies, and Energy-Related Applications. , 2018, Small.

[115]  Y. Gogotsi,et al.  Automated Scalpel Patterning of Solution Processed Thin Films for Fabrication of Transparent MXene Microsupercapacitors. , 2018, Small.

[116]  Y. Gogotsi,et al.  Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries , 2018, ACS omega.

[117]  Z. Cui,et al.  Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes , 2018, Journal of Membrane Science.

[118]  W. Que,et al.  Flexible Nitrogen‐Doped 2D Titanium Carbides (MXene) Films Constructed by an Ex Situ Solvothermal Method with Extraordinary Volumetric Capacitance , 2018, Advanced Energy Materials.

[119]  Y. Gogotsi,et al.  Layer‐by‐Layer Assembly of Cross‐Functional Semi‐transparent MXene‐Carbon Nanotubes Composite Films for Next‐Generation Electromagnetic Interference Shielding , 2018, Advanced Functional Materials.

[120]  Husam N. Alshareef,et al.  Direct Writing of Additive‐Free MXene‐in‐Water Ink for Electronics and Energy Storage , 2018, Advanced Materials Technologies.

[121]  L. Gan,et al.  MXene/Graphene Heterostructures as High-Performance Electrodes for Li-Ion Batteries. , 2018, ACS applied materials & interfaces.

[122]  Yan Yu,et al.  Advanced 3D Current Collectors for Lithium‐Based Batteries , 2018, Advanced materials.

[123]  Zhimin Xie,et al.  Modified MXene/Holey Graphene Films for Advanced Supercapacitor Electrodes with Superior Energy Storage , 2018, Advanced science.

[124]  H. Yang,et al.  Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides , 2018, Advanced materials.

[125]  T. Hua,et al.  Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics , 2018 .

[126]  J. Orangi,et al.  Controlling the Dimensions of 2D MXenes for Ultrahigh-Rate Pseudocapacitive Energy Storage. , 2018, ACS applied materials & interfaces.

[127]  Conor P. Cullen,et al.  In Situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving High‐Capacity, Long Lifetime Li‐S Batteries , 2018, Advanced science.

[128]  Chunfeng Hu,et al.  Extraordinary Areal and Volumetric Performance of Flexible Solid‐State Micro‐Supercapacitors Based on Highly Conductive Freestanding Ti3C2Tx Films , 2018, Advanced Electronic Materials.

[129]  Xueliang Sun,et al.  Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application , 2018, Electrochemical Energy Reviews.

[130]  Jun Lu,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[131]  Bin Xu,et al.  MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors , 2018, ACS Energy Letters.

[132]  Yury Gogotsi,et al.  Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers , 2018, Science Advances.

[133]  Bin Xu,et al.  Self‐Assembly of Transition Metal Oxide Nanostructures on MXene Nanosheets for Fast and Stable Lithium Storage , 2018, Advanced materials.

[134]  Zhimin Xie,et al.  A nanoporous MXene film enables flexible supercapacitors with high energy storage. , 2018, Nanoscale.

[135]  Xifei Li,et al.  SnO2/Reduced Graphene Oxide Interlayer Mitigating the Shuttle Effect of Li-S Batteries. , 2018, ACS applied materials & interfaces.

[136]  X. Lou,et al.  Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries , 2018 .

[137]  Arindam Mukhopadhyay,et al.  Photochromic 2D Metal-Organic Framework Nanosheets (MONs): Design, Synthesis, and Functional MON-Ormosil Composite , 2018 .

[138]  Dan Wang,et al.  Facile Synthesis of Crumpled Nitrogen‐Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries , 2018 .

[139]  Shi-gang Lu,et al.  Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage. , 2018, Small.

[140]  Y. Gogotsi,et al.  Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. , 2018, Nanoscale.

[141]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[142]  Y. Jiao,et al.  Emerging Two-Dimensional Nanomaterials for Electrocatalysis. , 2018, Chemical reviews.

[143]  Husam N. Alshareef,et al.  MXene Electrochemical Microsupercapacitor Integrated with Triboelectric Nanogenerator as a Wearable Self-charging Power Unit , 2018 .

[144]  Zhenwei Wang,et al.  Oxide Thin‐Film Electronics using All‐MXene Electrical Contacts , 2018, Advanced materials.

[145]  Haodong Shi,et al.  All-MXene-Based Integrated Electrode Constructed by Ti3C2 Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries. , 2018, ACS nano.

[146]  Xiaogang Zhang,et al.  2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries , 2018 .

[147]  Kyeongjae Cho,et al.  2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries , 2018, Nature Nanotechnology.

[148]  Sang-Hoon Park,et al.  Stamping of Flexible, Coplanar Micro‐Supercapacitors Using MXene Inks , 2018, Advanced Functional Materials.

[149]  Weiyuan Deng,et al.  3D Porous MXene (Ti3C2)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage. , 2018, ACS applied materials & interfaces.

[150]  Prasant Kumar Nayak,et al.  From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. , 2018, Angewandte Chemie.

[151]  Y. Gogotsi,et al.  Asymmetric Flexible MXene‐Reduced Graphene Oxide Micro‐Supercapacitor , 2018 .

[152]  Xifei Li,et al.  Controllably Designed "Vice-Electrode" Interlayers Harvesting High Performance Lithium Sulfur Batteries. , 2017, ACS applied materials & interfaces.

[153]  Micah J. Green,et al.  Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution , 2017 .

[154]  Yihua Gao,et al.  Recent Progress in Micro-Supercapacitors with In-Plane Interdigital Electrode Architecture. , 2017, Small.

[155]  Yury Gogotsi,et al.  Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na‐Ion Storage , 2017, Advanced materials.

[156]  Hao‐Bin Zhang,et al.  Hydrophobic, Flexible, and Lightweight MXene Foams for High‐Performance Electromagnetic‐Interference Shielding , 2017, Advanced materials.

[157]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[158]  Shubin Yang,et al.  Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes , 2017 .

[159]  Zhaojin Li,et al.  Chemical Origin of Termination-Functionalized MXenes: Ti3C2T2 as a Case Study , 2017 .

[160]  Zhipei Sun,et al.  Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics , 2017, Nature Communications.

[161]  Yury Gogotsi,et al.  Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance , 2017 .

[162]  Pierre-Louis Taberna,et al.  Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides , 2017, Nature Energy.

[163]  F. Du,et al.  Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene , 2017 .

[164]  Guoxiu Wang,et al.  Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries , 2017 .

[165]  Sang-Hoon Park,et al.  Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) , 2017 .

[166]  J. Xiong,et al.  Environmental Friendly Scalable Production of Colloidal 2D Titanium Carbonitride MXene with Minimized Nanosheets Restacking for Excellent Cycle Life Lithium-Ion Batteries , 2017 .

[167]  Yayuan Liu,et al.  An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes , 2017, Advanced materials.

[168]  Y. Gogotsi,et al.  Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents , 2017 .

[169]  J. Caro,et al.  A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. , 2017, Angewandte Chemie.

[170]  Xiaodong Zhuang,et al.  Flexible All‐Solid‐State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene , 2017 .

[171]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[172]  A. Du,et al.  Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production , 2017, Nature Communications.

[173]  Chang E. Ren,et al.  2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage , 2016 .

[174]  Husam N. Alshareef,et al.  MXene‐on‐Paper Coplanar Microsupercapacitors , 2016 .

[175]  Chao Zhang,et al.  High-Capacitance Mechanism for Ti3C2Tx MXene by in Situ Electrochemical Raman Spectroscopy Investigation. , 2016, ACS nano.

[176]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[177]  Minshen Zhu,et al.  Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene , 2016 .

[178]  Guoxiu Wang,et al.  Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium-Sulfur Batteries. , 2016, ACS applied materials & interfaces.

[179]  Yi Cui,et al.  Designing high-energy lithium-sulfur batteries. , 2016, Chemical Society reviews.

[180]  Hong‐Jie Peng,et al.  Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries. , 2016, Angewandte Chemie.

[181]  Cheng-Cheng Liu,et al.  Rise of silicene: A competitive 2D material , 2016 .

[182]  Kai Xiao,et al.  Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. , 2016, ACS nano.

[183]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[184]  Chang E. Ren,et al.  Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices , 2016 .

[185]  Ming-Yang Li,et al.  Heterostructures based on two-dimensional layered materials and their potential applications , 2016 .

[186]  Zhong Jin,et al.  Emerging non-lithium ion batteries , 2016 .

[187]  Y. Gogotsi,et al.  Highly Conductive Optical Quality Solution‐Processed Films of 2D Titanium Carbide , 2016 .

[188]  Bruce Dunn,et al.  Efficient storage mechanisms for building better supercapacitors , 2016, Nature Energy.

[189]  Yury Gogotsi,et al.  Porous Two‐Dimensional Transition Metal Carbide (MXene) Flakes for High‐Performance Li‐Ion Storage , 2016 .

[190]  Y. Gogotsi,et al.  The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). , 2016, Nanoscale.

[191]  Yang Zhao,et al.  Recent Developments and Understanding of Novel Mixed Transition‐Metal Oxides as Anodes in Lithium Ion Batteries , 2016 .

[192]  Pierre-Louis Taberna,et al.  Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes , 2016 .

[193]  A. Yamada,et al.  Sodium-Ion Intercalation Mechanism in MXene Nanosheets. , 2016, ACS nano.

[194]  J. Tu,et al.  Transition Metal Carbides and Nitrides in Energy Storage and Conversion , 2016, Advanced science.

[195]  Jaeho Jeon,et al.  Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CT(x), T: -OH, -F and -O). , 2015, Nanoscale.

[196]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[197]  Yury Gogotsi,et al.  Amine‐Assisted Delamination of Nb2C MXene for Li‐Ion Energy Storage Devices , 2015, Advanced materials.

[198]  M. Naguib,et al.  Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes". , 2015, Dalton transactions.

[199]  Hee‐Tae Jung,et al.  High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries , 2015 .

[200]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[201]  Guanhua Zhang,et al.  High‐Performance and Ultra‐Stable Lithium‐Ion Batteries Based on MOF‐Derived ZnO@ZnO Quantum Dots/C Core–Shell Nanorod Arrays on a Carbon Cloth Anode , 2015, Advanced materials.

[202]  B. Scrosati,et al.  The role of graphene for electrochemical energy storage. , 2015, Nature materials.

[203]  Quan‐Fu An,et al.  Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration , 2015 .

[204]  Y. Gogotsi,et al.  Synthesis of two-dimensional materials by selective extraction. , 2015, Accounts of chemical research.

[205]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[206]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[207]  M. Islam,et al.  Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. , 2014, Journal of the American Chemical Society.

[208]  Yury Gogotsi,et al.  Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. , 2014, ACS nano.

[209]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[210]  Yury Gogotsi,et al.  Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. , 2014, Journal of the American Chemical Society.

[211]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[212]  Yoshiyuki Kawazoe,et al.  Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides , 2013 .

[213]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[214]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[215]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[216]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[217]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[218]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[219]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[220]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[221]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[222]  Wei Zhang,et al.  Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity , 2019, Energy Storage Materials.

[223]  Mingzhi Huang,et al.  A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries , 2019, Energy Storage Materials.

[224]  Xifei Li,et al.  Rational design of hybrid Co3O4/graphene films: Free-standing flexible electrodes for high performance supercapacitors , 2018 .

[225]  Julia Fernandez-Rodriguez,et al.  High‐Performance Ultrathin Flexible Solid‐State Supercapacitors Based on Solution Processable Mo1.33C MXene and PEDOT:PSS , 2018 .

[226]  Peter Müller-Buschbaum,et al.  Silicon based lithium-ion battery anodes: A chronicle perspective review , 2017 .

[227]  Yury Gogotsi,et al.  Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance , 2015, Advanced materials.