Potential for carbon dioxide sequestration in flood basalts

[1] Flood basalts are a potentially important host medium for geologic sequestration of anthropogenic CO2. Most lava flows have flow tops that are porous and permeable and have enormous capacity for storage of CO2. Interbedded sediment layers and dense low-permeability basalt rock overlying sequential flows may act as effective seals allowing time for mineralization reactions to occur. Laboratory experiments confirm relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. Calculations suggest a sufficiently short time frame for onset of carbonate precipitation after CO2 injection that verification of in situ mineralization rates appears feasible in field pilot studies. If proven viable, major flood basalts in the United States and India would provide significant additional CO2 storage capacity and additional geologic sequestration options in certain regions where more conventional storage options are limited.

[1]  Interaction of traveling chemical waves with density driven hydrodynamic flows , 1995 .

[2]  J. McBride Constraints on the structure and tectonic development of the Early Mesozoic South Georgia Rift, southeastern United States; Seismic reflection data processing and interpretation , 1991 .

[3]  C. Klootwijk Palaeomagnetism of the-Upper Gondwana-Rajmahal traps, Northeast India , 1971 .

[4]  Eiichi Tajika,et al.  Climate change during the last 150 million years: reconstruction from a carbon cycle model , 1998 .

[5]  A. T. Anderson,et al.  Bubble coalescence in basalt flows: comparison of a numerical model with natural examples , 1989 .

[6]  G. Retallack Carbon dioxide and climate over the past 300 Myr , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Oleg S. Pokrovsky,et al.  Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12 , 2000 .

[8]  K. Pruess,et al.  Numerical simulation of CO2 disposal by mineral trapping in deep aquifers , 2004 .

[9]  John J. Nitao,et al.  Reactive transport modelling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning , 2004, Geological Society, London, Special Publications.

[10]  Mason B. Tomson,et al.  Precipitation and dissolution kinetics and equilibria of aqueous ferrous carbonate vs temperature , 1992 .

[11]  Dork L. Sahagian,et al.  Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks , 2001 .

[12]  O. Eldholm,et al.  Large Igneous Provinces and Plate Tectonics , 2000 .

[13]  P. Lechler,et al.  Chemical composition and stratigraphic correlation of Mesozoic basalt units of the Newark Basin, New Jersey, and the Hartford Basin, Connecticut: Summary , 1981 .

[14]  H. Kulkarni,et al.  Hydrogeological framework of the Deccan basalt groundwater systems, west-central India , 2000 .

[15]  J. Edmonds,et al.  Economic and environmental choices in the stabilization of atmospheric CO2 concentrations , 1996, Nature.

[16]  Carl I. Steefel,et al.  Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2 , 2005 .

[17]  Vernon G. Johnson,et al.  Natural Gas Storage in Basalt Aquifers of the Columbia Basin, Pacific Northwest USA: A Guide to Site Characterization , 2002 .

[18]  Yuping Zhang,et al.  Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology , 2000 .

[19]  M. Engelhard,et al.  Interaction of Rock Minerals with Carbon Dioxide and Brine: A Hydrothermal Investigation , 2002 .

[20]  R. Seiler,et al.  Ground-water quality and geochemistry, Carson Desert, western Nevada , 1994 .

[21]  Randall T. Cygan,et al.  The dissolution kinetics of mixed-cation orthosilicate minerals , 1993 .

[22]  T. H. Christensen,et al.  The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments , 2002 .

[23]  J. Miller Ground water atlas of the United States , 1993 .

[24]  Erik Lindeberg,et al.  Vertical convection in an aquifer column under a gas cap of CO2 , 1997 .

[25]  James J. Dooley,et al.  The Role of Carbon Management Technologies in Addressing Atmospheric Stabilization of Greenhouse Gases , 2002 .

[26]  Atul K. Jain,et al.  Stability: Energy for a Greenhouse Planet Advanced Technology Paths to Global Climate , 2008 .

[27]  R. Wogelius,et al.  Olivine dissolution kinetics at near-surface conditions , 1992 .

[28]  Stefan Bachu,et al.  Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change , 2000 .

[29]  P. Aagaard,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; I, Theoretical considerations , 1982 .

[30]  S. Bachu,et al.  Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution , 2003 .

[31]  B. Kennett,et al.  A low seismic wavespeed anomaly beneath northwestern India: a seismic signature of the Deccan plume? , 1999 .

[32]  G. E. Rush,et al.  Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products , 2002 .

[33]  Karsten Pruess,et al.  Mineral Sequestration of Carbon Dixoide in a Sandstone-Shale System , 2004 .

[34]  Karsten Pruess,et al.  Multiphase flow dynamics during CO2 disposal into saline aquifers , 2002 .

[35]  A. Wit Miscible density fingering of chemical fronts in porous media: Nonlinear simulations , 2004 .

[36]  M. Saar,et al.  Permeability‐porosity relationship in vesicular basalts , 1999 .

[37]  Klaus S. Lackner,et al.  Progress on binding CO2 in mineral substrates , 1997 .

[38]  Dork L. Sahagian,et al.  Analysis of the vesicular structure of basalts , 2005, Comput. Geosci..

[39]  P. L. Stark The United States geological survey website , 1997 .

[40]  V. M. Tiwari,et al.  Density inhomogeneities beneath Deccan Volcanic Province, India as derived from gravity data , 2001 .

[41]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[42]  Richard A. Volkert,et al.  Pegmatoid and Gabbroid Layers in Jurassic Preakness and Hook Mountain Basalts, Newark Basin, New Jersey , 2001, The Journal of Geology.

[43]  R. Wogelius,et al.  Olivine dissolution at 25°C: Effects of pH, CO2, and organic acids , 1991 .

[44]  J. Varekamp,et al.  Carbon sources in arc volcanism, with implications for the carbon cycle , 1992 .

[45]  S. Shimada,et al.  Crustal strain field in the Deccan trap region, western India, derived from GPS measurements , 2000 .

[46]  S. Gíslason,et al.  Seafloor weathering controls on atmospheric CO2 and global climate , 1997 .

[47]  P. Wignall Large igneous provinces and mass extinctions , 2001 .

[48]  N. Opdyke,et al.  Magnetostratigraphic investigations on an Emeishan basalt section in western Guizhou province, China , 1998 .

[49]  D. Sahagian,et al.  Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation , 1994, Nature.

[50]  R. C. Kerr,et al.  Convective exchange between pore fluid and an overlying reservoir of denser fluid: a post-cumulus process in layered intrusions , 1985 .

[51]  J. J. Dooley,et al.  Retention of CO2 in Geologic Sequestration Formations: Desirable Levels, Economic Considerations, and the Implications for Sequestration R&D , 2003 .

[52]  S. Tomkeieff The basalt lavas of the Giant’s Causeway district of Northern Ireland , 1940 .

[53]  P. Gouze,et al.  Chemical reactions and porosity changes during sedimentary diagenesis , 2002 .

[54]  T. O. Early,et al.  A hydrochemical data base for the Hanford Site, Washington , 1986 .

[55]  S. Brennan,et al.  Specific sequestration volumes; a useful tool for CO 2 storage capacity assessment , 2003 .

[56]  T. J. Wolery,et al.  EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3 , 1992 .