Meta-GGA Density Functional Calculations on Atoms with Spherically Symmetric Densities in the Finite Element Formalism

Density functional calculations on atoms are often used for determining accurate initial guesses as well as generating various types of pseudopotential approximations and efficient atomic-orbital basis sets for polyatomic calculations. To reach the best accuracy for these purposes, the atomic calculations should employ the same density functional as the polyatomic calculation. Atomic density functional calculations are typically carried out employing spherically symmetric densities, corresponding to the use of fractional orbital occupations. We have described their implementation for density functional approximations (DFAs) belonging to the local density approximation (LDA) and generalized gradient approximation (GGA) levels of theory as well as Hartree–Fock (HF) and range-separated exact exchange [Lehtola, S. Phys. Rev. A2020, 101, 012516]. In this work, we describe the extension to meta-GGA functionals using the generalized Kohn–Sham scheme, in which the energy is minimized with respect to the orbitals, which in turn are expanded in the finite element formalism with high-order numerical basis functions. Furnished with the new implementation, we continue our recent work on the numerical well-behavedness of recent meta-GGA functionals [Lehtola, S.; Marques, M. A. L. J. Chem. Phys.2022, 157, 174114]. We pursue complete basis set (CBS) limit energies for recent density functionals and find many to be ill-behaved for the Li and Na atoms. We report basis set truncation errors (BSTEs) of some commonly used Gaussian basis sets for these density functionals and find the BSTEs to be strongly functional dependent. We also discuss the importance of density thresholding in DFAs and find that all of the functionals studied in this work yield total energies converged to 0.1 μEh when densities smaller than 10–11a0–3 are screened out.

[1]  F. Gygi All-Electron Plane-Wave Electronic Structure Calculations , 2023, Journal of chemical theory and computation.

[2]  S. Lehtola Atomic Electronic Structure Calculations with Hermite Interpolating Polynomials , 2023, The journal of physical chemistry. A.

[3]  S. Lehtola,et al.  How good are recent density functionals for ground and excited states of one-electron systems? , 2022, The Journal of chemical physics.

[4]  S. Lehtola,et al.  Many recent density functionals are numerically ill-behaved. , 2022, The Journal of chemical physics.

[5]  S. Kümmel,et al.  First steps towards achieving both ultranonlocality and a reliable description of electronic binding in a meta-generalized gradient approximation , 2022, Physical Review Research.

[6]  M. Côté,et al.  Cubic spline solver for generalized density functional treatments of atoms and generation of atomic datasets for use with exchange-correlation functionals including meta-GGA , 2022, Physical Review B.

[7]  P. Blaha,et al.  Implementation of self-consistent MGGA functionals in augmented plane wave based methods , 2021, Physical Review B.

[8]  Susi Lehtola,et al.  Free and open source software for computational chemistry education , 2021, WIREs Computational Molecular Science.

[9]  S. Ehlert,et al.  r2SCAN-3c: A "Swiss army knife" composite electronic-structure method. , 2021, The Journal of chemical physics.

[10]  J. Perdew,et al.  r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation for general chemical applications. , 2020, The Journal of chemical physics.

[11]  S. Ehlert,et al.  r2SCAN-3c: An Efficient “Swiss Army Knife” Composite Electronic-Structure Method , 2020 .

[12]  J. Perdew,et al.  Correction to "Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation". , 2020, The journal of physical chemistry letters.

[13]  J. Perdew,et al.  Accurate and Numerically Efficient r 2 SCAN Meta-Generalized Gradient Approximation , 2020 .

[14]  J. Perdew,et al.  Accurate and numerically efficient r$^2$SCAN meta-generalized gradient approximation , 2020, 2008.03374.

[15]  P. Kraus Basis set extrapolations for density functional theory. , 2020, Journal of chemical theory and computation.

[16]  R. Shaw The completeness properties of Gaussian‐type orbitals in quantum chemistry , 2020, International Journal of Quantum Chemistry.

[17]  Frank Neese,et al.  The ORCA quantum chemistry program package. , 2020, The Journal of chemical physics.

[18]  Victor Wen-zhe Yu,et al.  Siesta: Recent developments and applications. , 2020, The Journal of chemical physics.

[19]  Zachary L Glick,et al.  Psi4 1.4: Open-source software for high-throughput quantum chemistry. , 2020, The Journal of chemical physics.

[20]  D. Bowler,et al.  Large scale and linear scaling DFT with the CONQUEST code. , 2020, The Journal of chemical physics.

[21]  E. Engel,et al.  Efficient implementation of the superposition of atomic potentials initial guess for electronic structure calculations in Gaussian basis sets. , 2020, The Journal of chemical physics.

[22]  D. Truhlar,et al.  M06-SX screened-exchange density functional for chemistry and solid-state physics , 2020, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Lehtola Polarized Gaussian basis sets from one-electron ions. , 2020, The Journal of chemical physics.

[24]  S. Lehtola,et al.  An Overview of Self-Consistent Field Calculations Within Finite Basis Sets † , 2019, Molecules.

[25]  S. Lehtola Fully numerical calculations on atoms with fractional occupations and range-separated exchange functionals , 2019, Physical Review A.

[26]  S. Kümmel,et al.  Ultranonlocality and accurate band gaps from a meta-generalized gradient approximation , 2019, Physical Review Research.

[27]  Kurt Stokbro,et al.  QuantumATK: an integrated platform of electronic and atomic-scale modelling tools , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  Albert P Bartók,et al.  Regularized SCAN functional. , 2019, The Journal of chemical physics.

[29]  S. Lehtola A review on non‐relativistic, fully numerical electronic structure calculations on atoms and diatomic molecules , 2019, International Journal of Quantum Chemistry.

[30]  Xiao He,et al.  Revised M11 Exchange-Correlation Functional for Electronic Excitation Energies and Ground-State Properties. , 2019, The journal of physical chemistry. A.

[31]  Susi Lehtola,et al.  Fully numerical Hartree‐Fock and density functional calculations. II. Diatomic molecules , 2018, International Journal of Quantum Chemistry.

[32]  S. Lehtola Fully numerical Hartree‐Fock and density functional calculations. I. Atoms , 2018, International Journal of Quantum Chemistry.

[33]  Susi Lehtola,et al.  Assessment of Initial Guesses for Self-Consistent Field Calculations. Superposition of Atomic Potentials: Simple yet Efficient , 2018, Journal of chemical theory and computation.

[34]  D. Truhlar,et al.  Revised M06 density functional for main-group and transition-metal chemistry , 2018, Proceedings of the National Academy of Sciences.

[35]  Micael J. T. Oliveira,et al.  Recent developments in libxc - A comprehensive library of functionals for density functional theory , 2018, SoftwareX.

[36]  D. Mejía-Rodríguez,et al.  Deorbitalization strategies for meta-generalized-gradient-approximation exchange-correlation functionals , 2017, 1710.06032.

[37]  Haoyu S. Yu,et al.  Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics , 2017, Proceedings of the National Academy of Sciences.

[38]  Yi Yao,et al.  Plane-wave pseudopotential implementation and performance of SCAN meta-GGA exchange-correlation functional for extended systems. , 2017, The Journal of chemical physics.

[39]  Stefan Goedecker,et al.  The Elephant in the Room of Density Functional Theory Calculations. , 2017, The journal of physical chemistry letters.

[40]  Xiao He,et al.  Correction: MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions , 2016, Chemical science.

[41]  M. Head‐Gordon,et al.  ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. , 2016, The Journal of chemical physics.

[42]  Xiao He,et al.  MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids. , 2016, Journal of chemical theory and computation.

[43]  Hong Guo,et al.  RESCU: A real space electronic structure method , 2015, J. Comput. Phys..

[44]  M. Head‐Gordon,et al.  Mapping the genome of meta-generalized gradient approximation density functionals: the search for B97M-V. , 2015, The Journal of chemical physics.

[45]  E. Carter,et al.  Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation , 2015 .

[46]  Adrienn Ruzsinszky,et al.  Semilocal density functional obeying a strongly tightened bound for exchange , 2015, Proceedings of the National Academy of Sciences.

[47]  L. Constantin,et al.  Kohn-Sham kinetic energy density in the nuclear and asymptotic regions: Deviations from the von Weizsäcker behavior and applications to density functionals , 2014, 1411.3804.

[48]  L. Kronik,et al.  A self-interaction-free local hybrid functional: accurate binding energies vis-à-vis accurate ionization potentials from Kohn-Sham eigenvalues. , 2014, The Journal of chemical physics.

[49]  Narbe Mardirossian,et al.  ωB97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. , 2014, Physical chemistry chemical physics : PCCP.

[50]  Narbe Mardirossian,et al.  x B 97 XV : A 10-parameter , range-separated hybrid , generalized gradient approximation density functional with nonlocal correlation , designed by a survival-ofthe-fittest strategy , 2014 .

[51]  D. Truhlar,et al.  Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. , 2012, Physical chemistry chemical physics : PCCP.

[52]  Donald G Truhlar,et al.  An improved and broadly accurate local approximation to the exchange-correlation density functional: the MN12-L functional for electronic structure calculations in chemistry and physics. , 2012, Physical chemistry chemical physics : PCCP.

[53]  Bing Xiao,et al.  Communication: Effect of the orbital-overlap dependence in the meta generalized gradient approximation. , 2012, The Journal of chemical physics.

[54]  Keijo Hämäläinen,et al.  ERKALE—A flexible program package for X‐ray properties of atoms and molecules , 2012, J. Comput. Chem..

[55]  P. Norman,et al.  Phosphorescence parameters for platinum (II) organometallic chromophores: A study at the non-collinear four-component Kohn–Sham level of theory , 2012 .

[56]  Donald G. Truhlar,et al.  M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics , 2012 .

[57]  Samuel B. Trickey,et al.  Issues and challenges in orbital-free density functional calculations , 2011, Comput. Phys. Commun..

[58]  P. Schwerdtfeger The pseudopotential approximation in electronic structure theory. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[59]  Georg Kresse,et al.  Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method , 2011 .

[60]  J. Perdew,et al.  Erratum: Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry [Phys. Rev. Lett. 103 , 026403 (2009)] , 2011 .

[61]  G. Makov,et al.  Ensemble v-representable ab-initio density-functional calculation of energy and spin in atoms: a test of exchange-correlation approximations. , 2010, 1011.4567.

[62]  Weitao Yang,et al.  Accelerating self-consistent field convergence with the augmented Roothaan-Hall energy function. , 2010, The Journal of chemical physics.

[63]  Kristian Sommer Thygesen,et al.  Localized atomic basis set in the projector augmented wave method , 2009, 1303.0348.

[64]  S. Klaiman,et al.  Spanning the Hilbert space with an even tempered Gaussian basis set , 2009 .

[65]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[66]  Adrienn Ruzsinszky,et al.  Workhorse semilocal density functional for condensed matter physics and quantum chemistry. , 2009, Physical review letters.

[67]  D. Truhlar,et al.  Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. , 2008, Journal of chemical theory and computation.

[68]  Frank Jensen,et al.  Polarization consistent basis sets. 4: the elements He, Li, Be, B, Ne, Na, Mg, Al, and Ar. , 2007, The journal of physical chemistry. A.

[69]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[70]  Huub J. J. Van Dam,et al.  Starting SCF calculations by superposition of atomic densities , 2006, J. Comput. Chem..

[71]  T. Helgaker,et al.  Polarization consistent basis sets. V. The elements Si-Cl. , 2004, The Journal of chemical physics.

[72]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[73]  F. Jensen Polarization consistent basis sets. IV. The basis set convergence of equilibrium geometries, harmonic vibrational frequencies, and intensities , 2003 .

[74]  Frank Jensen,et al.  Polarization consistent basis sets. III. The importance of diffuse functions , 2002 .

[75]  Frank Jensen,et al.  Polarization consistent basis sets. II. Estimating the Kohn-Sham basis set limit , 2002 .

[76]  F. Jensen Erratum: “Polarization consistent basis sets: Principles” [J. Chem. Phys. 115, 9113 (2001)] , 2002 .

[77]  Frank Jensen,et al.  Polarization consistent basis sets: Principles , 2001 .

[78]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[79]  M. Stiles,et al.  Erratum: Local-density-functional calculations of the energy of atoms [Phys. Rev. A 55, 191 (1997)] , 1997 .

[80]  A. Becke Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals , 1997 .

[81]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[82]  Mark D. Stiles,et al.  LOCAL-DENSITY-FUNCTIONAL CALCULATIONS OF THE ENERGY OF ATOMS , 1997 .

[83]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[84]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[85]  Mark D. Stiles,et al.  Atomic Reference Data for Electronic Structure Calculations , 1996 .

[86]  D. Chong Completeness profiles of one-electron basis sets , 1995 .

[87]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[88]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[89]  Werner Kutzelnigg,et al.  Theory of the expansion of wave functions in a gaussian basis , 1994 .

[90]  Emilio San-Fabián,et al.  Automatic numerical integration techniques for polyatomic molecules , 1994 .

[91]  H. Sellers,et al.  The C2‐DIIS convergence acceleration algorithm , 1993 .

[92]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[93]  N. H. March,et al.  Kinetic energy density as a function of subshell electron densities , 1990 .

[94]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[95]  March,et al.  Exact potential-phase relation for the ground state of the C atom. , 1989, Physical review. A, General physics.

[96]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[97]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[98]  P. Pulay Improved SCF convergence acceleration , 1982 .

[99]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[100]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[101]  R. Hoffmann An Extended Hückel Theory. I. Hydrocarbons , 1963 .

[102]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[103]  F. Bloch,et al.  Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit , 1929 .

[104]  A. Unsöld,et al.  Beiträge zur Quantenmechanik der Atome , 1927 .