Direct influence of morphology on current generation in conjugated polymer:methanofullerene solar cells measured by near-field scanning photocurrent microscopy

[1]  J. Hummelen,et al.  Morphology and fluorescence quenching in photovoltaic samples containing fullerene and poly(p-phenylene-vinylene) derivatives , 2004 .

[2]  J. Holdsworth,et al.  Direct Photocurrent Mapping of Organic Solar Cells Using a Near-Field Scanning Optical Microscope , 2004 .

[3]  Ronn Andriessen,et al.  Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM , 2003 .

[4]  Christoph J. Brabec,et al.  Optical- and photocurrent-detected magnetic resonance studies on conjugated polymer/fullerene composites , 2003 .

[5]  Christoph J. Brabec,et al.  A comparison between state-of-the-art ‘gilch’ and ‘sulphinyl’ synthesised MDMO-PPV/PCBM bulk hetero-junction solar cells , 2002 .

[6]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[7]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[8]  René A. J. Janssen,et al.  Realization of large area flexible fullerene — conjugated polymer photocells: A route to plastic solar cells , 1999 .

[9]  A. J. Heeger,et al.  Morphology of composites of semiconducting polymers mixed with C60 , 1996 .

[10]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[11]  Richard H. Jones A superficial look at polymers , 1995 .

[12]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[13]  Gordon G. Wallace,et al.  Conjugated polymers : New materials for photovoltaics , 2000 .