Structure-based functional annotation of hypothetical proteins from Candida dubliniensis: a quest for potential drug targets

Candida dubliniensis is an emerging pathogenic yeast in humans and infections are usually restricted to mucosal parts of the body. However, its presence in specimens of immunocompromised individuals, especially in HIV-positive patients, is of major medical concern. There is a large fraction of genomes of C. dubliniensis in the database which are uncharacterized for their biochemical, biophysical, and/or cellular functions, and are identified as hypothetical proteins (HPs). Function annotation of Candida genome is, therefore, essentially required to facilitate the understanding of mechanisms of pathogenesis and biochemical pathways important for selecting novel therapeutic target. Here, we carried out an extensive analysis to explain the functional properties of genome, using available protein structure and function analysis tools. We successfully modeled the structures of eight HPs for which a template with moderate sequence similarity was available in the protein data bank. All modeled structures were analyzed and we found that these proteins may act as transporter, kinase, transferase, ketosteroid, isomerase, hydrolase, oxidoreductase, and binding targets for DNA and RNA. Since these unique HPs of Candida showed no homologs in humans, these proteins are expected to be a potential target for future antifungal therapy.

[1]  Shigeki Mitaku,et al.  SOSUI: classification and secondary structure prediction system for membrane proteins , 1998, Bioinform..

[2]  Gert Lubec,et al.  Searching for hypothetical proteins: Theory and practice based upon original data and literature , 2005, Progress in Neurobiology.

[3]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[4]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[5]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[6]  Peer Bork,et al.  SMART 7: recent updates to the protein domain annotation resource , 2011, Nucleic Acids Res..

[7]  Thomas P Mathews,et al.  Development of amidine-based sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-phosphate in human leukemia cells. , 2011, Journal of medicinal chemistry.

[8]  Amos Bairoch,et al.  ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins , 2006, Nucleic Acids Res..

[9]  Mamoon Rashid,et al.  Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs , 2007, BMC Bioinformatics.

[10]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[11]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[12]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[13]  Youngchang Kim,et al.  Deep trefoil knot implicated in RNA binding found in an archaebacterial protein , 2002, Proteins.

[14]  Amos Bairoch,et al.  ScanProsite: a reference implementation of a PROSITE scanning tool. , 2002, Applied bioinformatics.

[15]  D. Sullivan,et al.  Candida dubliniensis: Characteristics and Identification , 1998, Journal of Clinical Microbiology.

[16]  M. Rapala-Kozik,et al.  Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. , 2009, Acta biochimica Polonica.

[17]  Andrej Sali,et al.  Comparative Protein Structure Modeling Using MODELLER , 2014, Current protocols in bioinformatics.

[18]  G. Moran,et al.  Candida dubliniensis: ten years on. , 2005, FEMS microbiology letters.

[19]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[20]  I. Tanaka,et al.  Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif‐like domain , 2006, Protein science : a publication of the Protein Society.

[21]  M. James,et al.  Crystal structure of Mycobacterium tuberculosis Rv0760c at 1.50 A resolution, a structural homolog of Delta(5)-3-ketosteroid isomerase. , 2008, Biochimica et biophysica acta.

[22]  W. Sly,et al.  High Resolution Crystal Structure of Human β-Glucuronidase Reveals Structural Basis of Lysosome Targeting , 2013, PloS one.

[23]  Prashanth Suravajhala,et al.  In Silico screening for functional candidates amongst hypothetical proteins , 2009, BMC Bioinformatics.

[24]  F. Ahmad,et al.  Structure-based functional annotation of putative conserved proteins having lyase activity from Haemophilus influenzae , 2014, 3 Biotech.

[25]  Manuel C. Peitsch,et al.  SWISS-MODEL: an automated protein homology-modeling server , 2003, Nucleic Acids Res..

[26]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[27]  Luigi Frusciante,et al.  ISOL@: an Italian SOLAnaceae genomics resource , 2008, BMC Bioinformatics.

[28]  Marie-Adèle Rajandream,et al.  Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. , 2009, Genome research.

[29]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[30]  Michael Habeck,et al.  HHfrag: HMM-based fragment detection using HHpred , 2011, Bioinform..

[31]  Xinqi Gong,et al.  Crystal structure of a bacterial homologue of glucose transporters GLUT1–4 , 2012, Nature.

[32]  John Kuriyan,et al.  Structural analysis of a eukaryotic sliding DNA clamp–clamp loader complex , 2004, Nature.

[33]  Richard M. Jackson,et al.  Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites , 2005, Bioinform..

[34]  D S Moss,et al.  Main-chain bond lengths and bond angles in protein structures. , 1993, Journal of molecular biology.

[35]  Alex Bateman,et al.  Filling out the structural map of the NTF2-like superfamily , 2013, BMC Bioinformatics.

[36]  Pieter F. W. Stouten,et al.  Fast prediction and visualization of protein binding pockets with PASS , 2000, J. Comput. Aided Mol. Des..

[37]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[38]  D. Kihara,et al.  Formyl‐coenzyme A (CoA):oxalate CoA‐transferase from the acidophile Acetobacter aceti has a distinctive electrostatic surface and inherent acid stability , 2012, Protein science : a publication of the Protein Society.

[39]  Manuel A. S. Santos,et al.  Evolution of pathogenicity and sexual reproduction in eight Candida genomes , 2009, Nature.

[40]  G. Moran,et al.  Differential Filamentation of Candida albicans and Candida dubliniensis Is Governed by Nutrient Regulation of UME6 Expression , 2010, Eukaryotic Cell.

[41]  T. Singh,et al.  Crystal structure of the novel complex formed between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. , 2008, Journal of molecular biology.

[42]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[43]  Hongwei Huang,et al.  Homology modeling, agonist binding site identification, and docking in octopamine receptor of Periplaneta americana , 2008, Comput. Biol. Chem..

[44]  Torsten Schwede,et al.  The SWISS-MODEL Repository and associated resources , 2008, Nucleic Acids Res..

[45]  F. Ahmad,et al.  Functional annotation of putative hypothetical proteins from Candida dubliniensis. , 2014, Gene.

[46]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[47]  Md. Imtaiyaz Hassan,et al.  Discovering a potent small molecule inhibitor for gankyrin using de novo drug design approach , 2011, Int. J. Comput. Biol. Drug Des..

[48]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[49]  F. Ahmad,et al.  Structural diversity of class I MHC-like molecules and its implications in binding specificities. , 2011, Advances in protein chemistry and structural biology.

[50]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[51]  F. Ahmad,et al.  Structural Characterization, Homology Modeling and Docking Studies of ARG674 Mutation in MyH8 Gene Associated with Trismus-Pseudocamptodactyly Syndrome , 2014 .

[52]  F. Ahmad,et al.  Receptor Chemoprint Derived Pharmacophore Model for Development of CAIX Inhibitors , 2014 .

[53]  M. Henman,et al.  Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro , 1997, Antimicrobial agents and chemotherapy.

[54]  K. Chaudhuri,et al.  In-Silico Structural and Functional Characterization of a V. cholerae O395 Hypothetical Protein Containing a PDZ1 and an Uncommon Protease Domain , 2013, PloS one.

[55]  A. Tocilj,et al.  Biological Crystallography Structure of an Aryl Esterase from Pseudomonas Fluorescens , 2022 .

[56]  K. Nakai,et al.  PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. , 1999, Trends in biochemical sciences.

[57]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[58]  Janet M. Thornton,et al.  ProFunc: a server for predicting protein function from 3D structure , 2005, Nucleic Acids Res..

[59]  M. I. Hassan,et al.  Structure‐guided design of peptidic ligand for human prostate specific antigen , 2007, Journal of peptide science : an official publication of the European Peptide Society.

[60]  A. Elofsson,et al.  Can correct protein models be identified? , 2003, Protein science : a publication of the Protein Society.

[61]  J. Kumar,et al.  Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds , 2013, Journal of natural science, biology, and medicine.

[62]  C. Orengo,et al.  Protein function annotation by homology-based inference , 2009, Genome Biology.

[63]  R. Abagyan,et al.  Flexible ligand docking to multiple receptor conformations: a practical alternative. , 2008, Current opinion in structural biology.

[64]  David W Mount,et al.  Using the Basic Local Alignment Search Tool (BLAST). , 2007, CSH protocols.

[65]  N. Walker,et al.  Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. , 2013, Structure.

[66]  M. I. Hassan,et al.  Structural Model of Human PSA: A Target for Prostate Cancer Therapy , 2007, Chemical biology & drug design.

[67]  Alex Bateman,et al.  The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..

[68]  Christina A Cuomo,et al.  Approaches to Fungal Genome Annotation , 2011, Mycology.

[69]  Srinivasan Ramachandran,et al.  FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens , 2011, BMC Genomics.

[70]  Kurre Purna Nagasree,et al.  AUDocker LE: A GUI for virtual screening with AUTODOCK Vina , 2011, BMC Research Notes.

[71]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.

[72]  K. Chou,et al.  Predicting protein fold pattern with functional domain and sequential evolution information. , 2009, Journal of theoretical biology.

[73]  Michael Y. Galperin,et al.  'Conserved hypothetical' proteins: prioritization of targets for experimental study. , 2004, Nucleic acids research.

[74]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[75]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[76]  Matthew L. Danielson,et al.  Computer-aided drug design platform using PyMOL , 2011, J. Comput. Aided Mol. Des..

[77]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[78]  David Y. Thomas,et al.  Structure of the catalytic a(0)a fragment of the protein disulfide isomerase ERp72. , 2010, Journal of molecular biology.

[79]  G M Crippen,et al.  Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. , 1994, Journal of molecular biology.

[80]  B. Fries,et al.  Candida Infections of the Genitourinary Tract , 2010, Clinical Microbiology Reviews.

[81]  G. Cole,et al.  Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans. , 2007, Fungal genetics and biology : FG & B.

[82]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[83]  Nicola J. Mulder,et al.  Function Prediction and Analysis of Mycobacterium tuberculosis Hypothetical Proteins , 2012, International journal of molecular sciences.

[84]  P. Bork,et al.  Protein sequence motifs. , 1996, Current opinion in structural biology.