The Topological Study of an Infinite Family of Fullerenes with 10n Carbon Atoms

Fullerenes are carbon cage molecules having 12 pentagonal and (n/2 – 10) hexagonal faces, where 20 ≤ n (≠ 22) is an even integer. In this paper, an infinite class of fullerenes with 10n carbon atoms is investigated. We prove that the vertex–PI, Szeged and revised Szeged indices of this family are computed by formulas 150n2 − 100n, 250n3 + 3075n − 13800 and 250n3 + 250n2 + 4275n − 15650, respectively, when n > 10 is a positive integer. A MATLAB program is also presented that is useful for our calculations.

[1]  Tomaz Pisanski,et al.  Edge-contributions of some topological indices and arboreality of molecular graphs , 2009, Ars Math. Contemp..

[2]  A. Ashrafi,et al.  The PI and Edge Szeged Polynomials of an Infinite Family of Fullerenes , 2010 .

[3]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[4]  Wendy Myrvold,et al.  Vertex spirals in fullerenes and their implications for nomenclature of fullerene derivatives. , 2007, Chemistry.

[5]  Toufik Mansour,et al.  The vertex PI index and Szeged index of bridge graphs , 2009, Discret. Appl. Math..

[6]  Tobin A. Driscoll Learning MATLAB , 2009 .

[7]  Bo Zhou,et al.  On the revised Szeged index , 2011, Discret. Appl. Math..

[8]  Tomaz Pisanski,et al.  Use of the Szeged index and the revised Szeged index for measuring network bipartivity , 2010, Discret. Appl. Math..

[9]  Aleksandar Ilic On the extremal graphs with respect to the vertex PI index , 2010, Appl. Math. Lett..

[10]  Ali Reza Ashrafi,et al.  A matrix method for computing Szeged and vertex PI indices of join and composition of graphs , 2008 .

[11]  THE VERTEX PI AND SZEGED INDICES OF AN INFINITE FAMILY OF FULLERENES , 2008 .

[12]  Elkin Vumar,et al.  Wiener and vertex PI indices of Kronecker products of graphs , 2010, Discret. Appl. Math..

[13]  STUDY OF IPR FULLERENES BY COUNTING POLYNOMIALS , 2009 .

[14]  M. J. Nadjafi-Arani,et al.  Extremal graphs with respect to the vertex PI index , 2009, Appl. Math. Lett..

[15]  Mustapha Aouchiche,et al.  On a conjecture about the Szeged index , 2010, Eur. J. Comb..

[16]  Frank Harary,et al.  Graph Theory , 2016 .

[17]  J. S. McIndoe,et al.  Fullerenes , Nanotubes and Carbon Nanostructures , 2014 .

[18]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[19]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[20]  A. Ashrafi,et al.  PI and Omega Polynomials of IPR Fullerenes , 2010 .

[21]  Ali Reza Ashrafi,et al.  Vertex and edge PI indices of Cartesian product graphs , 2008, Discret. Appl. Math..

[22]  Milan Randić On generalization of wiener index for cyclic structures , 2002 .