Using mass spectrometry to characterize self-assembled monolayers presenting peptides, proteins, and carbohydrates.

Mass spectrometry (MS) is an important technique for characterizing the structures of surfaces and has several characteristics that are especially valuable in bioanalytical applications. In biochip applications, for example, MS offers the significant advantage that it does not require analytes to be labeled–either by direct attachment of fluorescent and radioactive labels or by binding of antibodies–and therefore offers greater flexibility in experiments.[1±4] Further, the use of immobilized ligands to isolate active proteins from the COMMUNICATIONS

[1]  Milan Mrksich,et al.  Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Milan Mrksich,et al.  Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. , 2002, Chemistry & biology.

[3]  M. Mrksich,et al.  Peptide chips for the quantitative evaluation of protein kinase activity , 2002, Nature Biotechnology.

[4]  Hanfa Zou,et al.  A Mass Spectrometry Based Direct‐Binding Assay for Screening Binding Partners of Proteins , 2002 .

[5]  T Isobe,et al.  BIA-MS-MS: biomolecular interaction analysis for functional proteomics. , 2001, Trends in biotechnology.

[6]  J. Schneider-Mergener,et al.  Applications of peptide arrays prepared by the SPOT-technology. , 2001, Current opinion in biotechnology.

[7]  M. Gerstein,et al.  Analysis of yeast protein kinases using protein chips , 2000, Nature Genetics.

[8]  I. Tomlinson,et al.  Antibody arrays for high-throughput screening of antibody–antigen interactions , 2000, Nature Biotechnology.

[9]  Stuart L. Schreiber,et al.  Small-Molecule Microarrays: Covalent Attachment and Screening of Alcohol-Containing Small Molecules on Glass Slides , 2000 .

[10]  S. Weinberger,et al.  Recent advancements in surface‐enhanced laser desorption/ionization‐time of flight‐mass spectrometry , 2000, Electrophoresis.

[11]  L. Hanley,et al.  Surface mass spectrometry of molecular species. , 1999, Journal of mass spectrometry : JMS.

[12]  B. T. Houseman,et al.  Die Rolle der Ligandendichte bei der enzymatischen Glycosylierung von Kohlenhydraten, die auf einer selbstorganisierten Alkanthiolat‐Monoschicht auf Gold präsentiert werden , 1999 .

[13]  M. Mrksich,et al.  The Role of Ligand Density in the Enzymatic Glycosylation of Carbohydrates Presented on Self-Assembled Monolayers of Alkanethiolates on Gold. , 1999, Angewandte Chemie.

[14]  L. Hanley,et al.  Two-Laser Mass Spectrometry of Thiolate, Disulfide, and Sulfide Self-Assembled Monolayers , 1998 .

[15]  T. McCarley,et al.  Toward the analysis of electrochemically modified self-assembled monolayers. Electrospray ionization mass spectrometry of organothiolates , 1997 .

[16]  G. Whitesides,et al.  Surface Plasmon Resonance Permits in Situ Measurement of Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates on Gold , 1995 .

[17]  G. Whitesides,et al.  Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers , 1993 .

[18]  M. Pregel,et al.  Potassium cryptate catalysis in the elimination reaction of a sulfonate ester , 1993 .

[19]  G. Whitesides,et al.  Formation of self-assembled monolayers by chemisorption of derivatives of oligo(ethylene glycol) of structure HS(CH2)11(OCH2CH2)mOH on gold , 1991 .

[20]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .