A 82-nW Chaotic Map True Random Number Generator Based on a Sub-Ranging SAR ADC

An ultra-low power true random number generator (TRNG) based on a sub-ranging SAR analog-to-digital converter (ADC) is proposed. The proposed TRNG is composed of a coarse-SAR ADC with a low-power adaptive-reset comparator and a low-power dynamic amplifier. The coarse-ADC part is shared with a sub-ranging SAR ADC for area reduction. The shared coarse-ADC not only plays the role of discrete-time chaotic circuit but also reduces the overall SAR ADC energy consumption by selectively activating the fine-SAR ADC. Also, the proposed dynamic residue amplifier consumes only 48 nW and the adaptive-reset comparator generates a chaotic map with only 6-nW consumption. The proposed TRNG core occupies 0.0045 mm2 in 0.18- $\mu \text{m}$ CMOS technology and consumes 82 nW at 270-kbps throughput with 0.6-V supply. It successfully passes all of National Institute of Standards and Technology (NIST) tests, and it achieves the state-of-the-art figure-of-merit of 0.3 pJ/bit.

[1]  R. Hu,et al.  Switched-current 3-bit CMOS 4.0-MHz wideband random signal generator , 2005, IEEE Journal of Solid-State Circuits.

[2]  Zhaoyu Liu,et al.  True random number generator in RFID systems against traceability , 2006, CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006..

[3]  Shen-Iuan Liu,et al.  A 0.43pJ/bit true random number generator , 2014, 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[4]  J. T. Bean,et al.  A current mode analog circuit for tent maps using piecewise linear functions , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[5]  R. Weigel,et al.  Energy-Efficient Wireless Sensing Using a Generic ADC Sensor Interface Within a Passive Multi-Standard RFID Transponder , 2011, IEEE Sensors Journal.

[6]  Gerald Holweg,et al.  A Multifrequency Passive Sensing Tag With On-Chip Temperature Sensor and Off-Chip Sensor Interface Using EPC HF and UHF RFID Technology , 2011, IEEE Journal of Solid-State Circuits.

[7]  Gerhard P. Hancke,et al.  Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches , 2009, IEEE Transactions on Industrial Electronics.

[8]  L. Kocarev,et al.  Chaos-based random number generators-part I: analysis [cryptography] , 2001 .

[9]  Hsin-Shu Chen,et al.  11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[10]  Shinobu Fujita,et al.  1200μm2 Physical Random-Number Generators Based on SiN MOSFET for Secure Smart-Card Application , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[11]  John Lach,et al.  A Sub-0 . 5 V Lattice-Based Public-Key Encryption Scheme for RFID Platforms in 130 nm CMOS , 2011 .

[12]  David Blaauw,et al.  3 A 23 Mb / s 23 pJ / b Fully Synthesized True-Random-Number Generator in 28 nm and 65 nm CMOS , 2018 .

[13]  L. Kocarev,et al.  Chaos-based random number generators. Part II: practical realization , 2001 .

[14]  井上 友喜 Ergodic theorems for piecewise affine Markov maps with indifferent fixed points , 1993 .

[15]  Jong-Wook Lee,et al.  A Battery-Assisted Passive EPC Gen-2 RFID Sensor Tag IC With Efficient Battery Power Management and RF Energy Harvesting , 2016, IEEE Transactions on Industrial Electronics.

[16]  Ángel Rodríguez-Vázquez,et al.  Nonlinear switched-current CMOS IC for random signal generation , 1993 .

[17]  Massimo Alioto,et al.  A feedback strategy to improve the entropy of a chaos-based random bit generator , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  R. Rovatti,et al.  Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos , 2005 .

[19]  Riccardo Rovatti,et al.  Implementation and Testing of High-Speed CMOS True Random Number Generators Based on Chaotic Systems , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Lai-Sang Young,et al.  Ergodic Theory of Chaotic Dynamical Systems , 1993 .

[21]  Himanshu Kaul,et al.  2.4 Gbps, 7 mW All-Digital PVT-Variation Tolerant True Random Number Generator for 45 nm CMOS High-Performance Microprocessors , 2012, IEEE Journal of Solid-State Circuits.

[22]  J. Alvin Connelly,et al.  A noise-based IC random number generator for applications in cryptography , 2000 .

[23]  Sergio Callegari,et al.  Very low cost chaos-based entropy source for the retrofit or design augmentation of networked devices , 2016 .

[24]  Ganesh K. Balachandran,et al.  A 440-nA True Random Number Generator for Passive RFID Tags , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  David Blaauw,et al.  An All-Digital Edge Racing True Random Number Generator Robust Against PVT Variations , 2016, IEEE Journal of Solid-State Circuits.

[26]  Vikram Suresh,et al.  $\mu $ RNG: A 300–950 mV, 323 Gbps/W All-Digital Full-Entropy True Random Number Generator in 14 nm FinFET CMOS , 2016, IEEE Journal of Solid-State Circuits.

[27]  A. Beirami,et al.  Discrete-time chaotic-map truly random number generators: design, implementation, and variability analysis of the zigzag map , 2012, 1206.1039.

[28]  Brian Otis,et al.  SOCWISP: A 9 μA, Addressable Gen2 Sensor Tag for Biosignal Acquisition , 2013 .

[29]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[30]  Jin-Yi Lin,et al.  A 0.3 V 10-bit 1.17 f SAR ADC With Merge and Split Switching in 90 nm CMOS , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  J. Holleman,et al.  A 2.92μW Hardware Random Number Generator , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[32]  Hoi-Jun Yoo,et al.  A 82nW chaotic-map true random number generator based on sub-ranging SAR ADC , 2016, ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference.

[33]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[34]  Sergio Callegari,et al.  Very low cost entropy source based on chaotic dynamics retrofittable on networked devices to prevent RNG attacks , 2014, 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS).

[35]  Eric A. M. Klumperink,et al.  A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[36]  G. Mazzini,et al.  Statistical modeling of discrete-time chaotic processes-basic finite-dimensional tools and applications , 2002, The IEEE International Symposium on Circuits and Systems, 2003. Tutorial Guide: ISCAS 2003..

[37]  Riccardo Rovatti,et al.  Noise robustness condition for chaotic maps with piecewise constant invariant density , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[38]  Markus Dichtl,et al.  How to Predict the Output of a Hardware Random Number Generator , 2003, CHES.

[39]  Werner Schindler,et al.  Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications , 2002, CHES.

[40]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[41]  Sergio Callegari,et al.  ADCs, Chaos and TRNGs: a Generalized View Exploiting Markov Chain Lumpability Properties , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[42]  Fan Zhang,et al.  A 9 $\mu$ A, Addressable Gen2 Sensor Tag for Biosignal Acquisition , 2010, IEEE Journal of Solid-State Circuits.