Reafference and the origin of the self in early nervous system evolution

Discussions of the function of early nervous systems usually focus on a causal flow from sensors to effectors, by which an animal coordinates its actions with exogenous changes in its environment. We propose, instead, that much early sensing was reafferent; it was responsive to the consequences of the animal's own actions. We distinguish two general categories of reafference—translocational and deformational—and use these to survey the distribution of several often-neglected forms of sensing, including gravity sensing, flow sensing and proprioception. We discuss sensing of these kinds in sponges, ctenophores, placozoans, cnidarians and bilaterians. Reafference is ubiquitous, as ongoing action, especially whole-body motility, will almost inevitably influence the senses. Corollary discharge—a pathway or circuit by which an animal tracks its own actions and their reafferent consequences—is not a necessary feature of reafferent sensing but a later-evolving mechanism. We also argue for the importance of reafferent sensing to the evolution of the body-self, a form of organization that enables an animal to sense and act as a single unit. This article is part of the theme issue ‘Basal cognition: multicellularity, neurons and the cognitive lens’.

[1]  Kirsty Y. Wan,et al.  Origins of eukaryotic excitability , 2020, Philosophical Transactions of the Royal Society B.

[2]  Caenorhabditis elegans body wall muscles sense mechanical signals with an amiloride-sensitive cation channel. , 2020, Biochemical and biophysical research communications.

[3]  Manuel Zimmer,et al.  Brain-wide representations of ongoing behavior: a universal principle? , 2020, Current Opinion in Neurobiology.

[4]  P. Funch,et al.  Contraction-Expansion and the Effects on the Aquiferous System in the Demosponge Halichondria panicea , 2020, Frontiers in Marine Science.

[5]  Liangliang Wang,et al.  Mechanoreception for Soft Robots via Intuitive Body Cues , 2020, Soft robotics.

[6]  Luis A Bezares-Calderón,et al.  Diversity of cilia-based mechanosensory systems and their functions in marine animal behaviour , 2019, Philosophical Transactions of the Royal Society B.

[7]  A. Senatore,et al.  Transcriptome profiling of Trichoplax adhaerens highlights its digestive epithelium and a rich set of genes for fast electrogenic and slow neuromodulatory cellular signaling , 2019 .

[8]  J. Liao,et al.  Efferent Modulation of Spontaneous Lateral Line Activity During and after Zebrafish Motor Commands , 2019, bioRxiv.

[9]  Rafael Yuste,et al.  Mapping the Whole-Body Muscle Activity of Hydra vulgaris , 2019, Current Biology.

[10]  Ashok Litwin-Kumar,et al.  A Drosophila larval premotor/motor neuron connectome generating two behaviors via distinct spatio-temporal muscle activity , 2019, bioRxiv.

[11]  G. Edgecombe,et al.  Cambrian Sessile, Suspension Feeding Stem-Group Ctenophores and Evolution of the Comb Jelly Body Plan , 2019, Current Biology.

[12]  Mirna Mihovilovic Skanata,et al.  Direction Selectivity in Drosophila Proprioceptors Requires the Mechanosensory Channel Tmc , 2019, Current Biology.

[13]  T. Liu,et al.  Piezo-like Gene Regulates Locomotion in Drosophila Larvae. , 2019, Cell reports.

[14]  W. Grueber,et al.  Characterization of Proprioceptive System Dynamics in Behaving Drosophila Larvae Using High-Speed Volumetric Microscopy , 2018, Current Biology.

[15]  A. Mamiya,et al.  Neural Coding of Leg Proprioception in Drosophila , 2018, Neuron.

[16]  Manu Prakash,et al.  Ultrafast epithelial contractions provide insights into contraction speed limits and tissue integrity , 2018, Proceedings of the National Academy of Sciences.

[17]  Claire Wyart,et al.  Active mechanosensory feedback during locomotion in the zebrafish spinal cord , 2018, Current Opinion in Neurobiology.

[18]  Jenna R. Sternberg,et al.  Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature , 2018, Nature Communications.

[19]  Thomas Ranner,et al.  Signatures of proprioceptive control in Caenorhabditis elegans locomotion , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  R. Satterlie,et al.  Tentacle Musculature in the Cubozoan Jellyfish Carybdea marsupialis , 2018, The Biological Bulletin.

[21]  Hyun-Ho Lim,et al.  A sensory-motor neuron type mediates proprioceptive coordination of steering in C. elegans via two TRPC channels , 2018, PLoS biology.

[22]  G. Jékely,et al.  Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance , 2018, bioRxiv.

[23]  M. Aronova,et al.  Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses , 2018, PloS one.

[24]  Jean-Baptiste Mouret,et al.  Adaptive and Resilient Soft Tensegrity Robots , 2017, Soft robotics.

[25]  R. Yuste,et al.  Non-overlapping Neural Networks in Hydra vulgaris , 2017, Current Biology.

[26]  S. Leys,et al.  The energetic cost of filtration by demosponges and their behavioural response to ambient currents , 2017, Journal of Experimental Biology.

[27]  S. Leys Respiration and Excurrent Velocity DATA for 5 demosponges - Data associated with: Ludeman, Reidenbach and Leys, JEB 2017 The energetic cost of filtration by demosponges and their behavioural response to ambient currents , 2017 .

[28]  Seungwan Ryu,et al.  Soft robot review , 2017 .

[29]  Gyu Hyun Kim,et al.  Tentonin 3/TMEM150c Confers Distinct Mechanosensitive Currents in Dorsal-Root Ganglion Neurons with Proprioceptive Function , 2016, Neuron.

[30]  R. Kuner,et al.  A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons , 2016, Scientific Reports.

[31]  Robert H Wurtz,et al.  Saccadic Corollary Discharge Underlies Stable Visual Perception , 2016, The Journal of Neuroscience.

[32]  N. Randel,et al.  Phototaxis and the origin of visual eyes , 2015, bioRxiv.

[33]  C. T. Howard The Importance of Being Active , 2016 .

[34]  T. Jessell,et al.  Piezo2 is the principal mechanotransduction channel for proprioception , 2015, Nature Neuroscience.

[35]  P. Godfrey‐Smith,et al.  An Option Space for Early Neural Evolution , 2015, bioRxiv.

[36]  Anmo J Kim,et al.  Cellular evidence for efference copy in Drosophila visuomotor processing , 2015, Nature Neuroscience.

[37]  E. Bornberg-Bauer,et al.  The Rise and Fall of TRP-N, an Ancient Family of Mechanogated Ion Channels, in Metazoa , 2015, Genome biology and evolution.

[38]  B. Baum,et al.  Tug of war--the influence of opposing physical forces on epithelial cell morphology. , 2015, Developmental biology.

[39]  F. Keijzer Moving and sensing without input and output: early nervous systems and the origins of the animal sensorimotor organization , 2015, Biology & Philosophy.

[40]  T. Kadowaki,et al.  Evolution of TRP channels inferred by their classification in diverse animal species. , 2015, Molecular phylogenetics and evolution.

[41]  L. Moroz Convergent evolution of neural systems in ctenophores , 2015, Journal of Experimental Biology.

[42]  S. Leys Elements of a ‘nervous system’ in sponges , 2015, Journal of Experimental Biology.

[43]  R. de Nys,et al.  Larval Settlement: The Role of Surface Topography for Sessile Coral Reef Invertebrates , 2015, PloS one.

[44]  A. Gomis TRP Channels and Mechanical Transduction , 2015 .

[45]  James J. Gibson,et al.  The Ecological Approach to Visual Perception: Classic Edition , 2014 .

[46]  J. Hammel,et al.  A New Flow-Regulating Cell Type in the Demosponge Tethya wilhelma – Functional Cellular Anatomy of a Leuconoid Canal System , 2014, PloS one.

[47]  S. Arber,et al.  Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback , 2014, Proceedings of the National Academy of Sciences.

[48]  Michael T Turvey,et al.  The Medium of Haptic Perception: A Tensegrity Hypothesis , 2014, Journal of motor behavior.

[49]  S. Tamm Cilia and the life of ctenophores , 2014 .

[50]  S. Leys,et al.  Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges , 2014, BMC Evolutionary Biology.

[51]  C. Bond Locomotion and contraction in an asconoid calcareous sponge , 2013 .

[52]  Yun Zhang,et al.  Complex RIA calcium dynamics and its function in navigational behavior , 2013, Worm.

[53]  Fred Keijzer,et al.  What nervous systems do: early evolution, input–output, and the skin brain thesis , 2013, Adapt. Behav..

[54]  A. Collins,et al.  Cnidarian phylogenetic relationships as revealed by mitogenomics , 2013, BMC Evolutionary Biology.

[55]  M. Hendricks,et al.  Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement , 2012, Nature.

[56]  W. Kier The diversity of hydrostatic skeletons , 2012, Journal of Experimental Biology.

[57]  Jeffrey S. Guasto,et al.  Fluid Mechanics of Planktonic Microorganisms , 2012 .

[58]  J. O'Regan,et al.  Discussion of J. Kevin O’Regan’s “Why Red Doesn’t Sound Like a Bell: Understanding the Feel of Consciousness” , 2011, Review of Philosophy and Psychology.

[59]  Manuela Schmidt,et al.  Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels , 2010, Science.

[60]  K. Drescher,et al.  Direct measurement of the flow field around swimming microorganisms. , 2010, Physical review letters.

[61]  Jeffrey S. Guasto,et al.  Oscillatory Flows Induced by Microoganisms Swimming in Two Dimensions , 2022 .

[62]  William R. Schafer,et al.  C. elegans TRP Family Protein TRP-4 Is a Pore-Forming Subunit of a Native Mechanotransduction Channel , 2010, Neuron.

[63]  L. Looger,et al.  The Role of the TRP Channel NompC in Drosophila Larval and Adult Locomotion , 2010, Neuron.

[64]  D. Grünbaum,et al.  Morphology–flow interactions lead to stage-selective vertical transport of larval sand dollars in shear flow , 2010, Journal of Experimental Biology.

[65]  Frederick Sachs,et al.  Stretch-activated ion channels: what are they? , 2010, Physiology.

[66]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[67]  G. Jékely Evolution of phototaxis , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[68]  M. Welsh,et al.  TRPA channels distinguish gravity sensing from hearing in Johnston's organ , 2009, Proceedings of the National Academy of Sciences.

[69]  Hidehiko K. Inagaki,et al.  The neural basis of Drosophila gravity-sensing and hearing , 2009, Nature.

[70]  Mark A. Frye,et al.  Invertebrate solutions for sensing gravity , 2009, Current Biology.

[71]  N. Holland,et al.  The origin and migration of the earliest‐developing sensory neurons in the peripheral nervous system of amphioxus , 2009, Evolution & development.

[72]  B. Geiger,et al.  Environmental sensing through focal adhesions , 2009, Nature Reviews Molecular Cell Biology.

[73]  H. Hausen,et al.  Mechanism of phototaxis in marine zooplankton , 2008, Nature.

[74]  M. Sommer,et al.  Corollary discharge across the animal kingdom , 2008, Nature Reviews Neuroscience.

[75]  S. Leys,et al.  Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge , 2007, Journal of Experimental Biology.

[76]  U. Windhorst Muscle proprioceptive feedback and spinal networks , 2007, Brain Research Bulletin.

[77]  A. Cohen,et al.  Larval lampreys possess a functional lateral line system , 2007, Journal of Comparative Physiology A.

[78]  Rolf Pfeifer,et al.  How the body shapes the way we think - a new view on intelligence , 2006 .

[79]  Olaf Sporns,et al.  Mapping Information Flow in Sensorimotor Networks , 2006, PLoS Comput. Biol..

[80]  D. Ingber,et al.  Cellular mechanotransduction: putting all the pieces together again , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[81]  P. Sternberg,et al.  A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue , 2006, Nature.

[82]  R. Meech,et al.  Physiology of coordination in sponges , 2006 .

[83]  Lars Gislén,et al.  Advanced optics in a jellyfish eye , 2005, Nature.

[84]  J. M. Locke Ultrastructure of the statocyst of the marine enchytraeid Grania americana (Annelida: Clitellata) , 2005 .

[85]  B. Merker The liabilities of mobility: A selection pressure for the transition to consciousness in animal evolution , 2005, Consciousness and Cognition.

[86]  Anna V. Filippova,et al.  Muscular system in polychaetes (Annelida) , 2005, Hydrobiologia.

[87]  Michael Nickel,et al.  Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae) , 2004, Journal of Experimental Biology.

[88]  Susan Hurley,et al.  Perception And Action: Alternative Views , 2001, Synthese.

[89]  Hans-Joachim Bischof,et al.  Gravity reception in crickets: The influence of cereal and antennal afferences on the head position , 1983, Journal of comparative physiology.

[90]  H. Bischof Die keulenförmigen Sensillen auf den Cerci der GrilleGryllus bimaculatus als Schwererezeptoren , 1975, Journal of comparative physiology.

[91]  D. J. Peteya A possible proprioceptor in Ceriantheopsis americanus (cnidaria, ceriantharia) , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[92]  G. Purschke Sense organs in polychaetes (Annelida) , 2005, Hydrobiologia.

[93]  C. L. Singla Fine structure of the sensory receptors of Aglantha digitale (Hydromedusae: Trachylina) , 2004, Cell and Tissue Research.

[94]  F. Chia,et al.  Fine structural study of the statocysts in the veliger larva of the nudibranch, Rostanga pulchra , 2004, Cell and Tissue Research.

[95]  C. L. Singla,et al.  Statocysts of hydromedusae , 2004, Cell and Tissue Research.

[96]  G. N. Orlovsky,et al.  Control of locomotion in marine mollusc Clione limacina , 2004, Experimental Brain Research.

[97]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[98]  Y. Arshavsky,et al.  Dual sensory-motor function for a molluskan statocyst network. , 2004, Journal of neurophysiology.

[99]  S. Tamm,et al.  Novel bridge of axon‐like processes of epithelial cells in the aboral sense organ of ctenophores , 2002, Journal of morphology.

[100]  C. Zuker,et al.  A Drosophila mechanosensory transduction channel. , 2000, Science.

[101]  S. Tyler,et al.  Functional morphology of musculature in the acoelomate worm, Convoluta pulchra (Plathelminthes) , 1999, Zoomorphology.

[102]  B. C,et al.  Tensegrity and mechanoregulation : from skeleton to cytoskeleton , 1999 .

[103]  A. Damasio The Feeling of What Happens: Body and Emotion in the Making of Consciousness , 1999 .

[104]  M. Srinivasan Insects as Gibsonian Animals , 1998 .

[105]  William H. Warren,et al.  Visually Controlled Locomotion: 40 years Later , 1998 .

[106]  J. Panksepp The periconscious substrates of consciousness: Affective states and the evolutionary origins of the self. , 1998 .

[107]  T. Matheson,et al.  Chordotonal Organs of Insects , 1998 .

[108]  Randall D. Beer,et al.  The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment , 1997, Trends in Neurosciences.

[109]  A. Abelson SETTLEMENT IN FLOW: UPSTREAM EXPLORATION OF SUBSTRATA BY WEAKLY SWIMMING LARVAE , 1997 .

[110]  Y. Arshavsky,et al.  Control of locomotion in marine mollusk Clione Limacina. IX. Neuronal mechanisms of spatial orientation. , 1995, Journal of neurophysiology.

[111]  O. Grüsser,et al.  On the history of the ideas of efference copy and reafference. , 1995, Clio medica.

[112]  G. Mackie The Elementary Nervous System Revisited , 1990 .

[113]  C. Janse,et al.  Intracellularly recorded responses to tilt and efferent input of statocyst sensory cells in the pulmonate snail Lymnaea stagnalis , 1988 .

[114]  H. Berg Random Walks in Biology , 2018 .

[115]  M. Koehl,et al.  Copepod feeding currents: Food capture at low Reynolds number1 , 1981 .

[116]  P. Mill Structure and Function of Proprioceptors in the Invertebrates , 1976 .

[117]  W. T. Powers Behavior, the control of perception , 1973 .

[118]  H. G. Wolff Multi‐directional sensitivity of statocyst receptor cells of the opisthobranch gastropod Aplysia limacina , 1972 .

[119]  G A Horridge,et al.  Statocysts of medusae and evolution of stereocilia. , 1969, Tissue & cell.

[120]  B. Bush,et al.  Crab Muscle Receptor which responds without Impulses , 1968, Nature.

[121]  G. Horridge RELATIONS BETWEEN NERVES AND CILIA IN CTENOPHORES. , 1965, American zoologist.

[122]  J Adler,et al.  Chemotaxis in Escherichia coli. , 1965, Cold Spring Harbor symposia on quantitative biology.

[123]  J. Gibson Visually controlled locomotion and visual orientation in animals. , 1998, British journal of psychology.

[124]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[125]  G. E. Smith The Elementary Nervous System , 1919, Nature.

[126]  Origin of the Nervous System , 1881, The Dental register.