Analysing the factors that influence the Pareto frontier of a bi-objective supply chain design problem

[1]  MengChu Zhou,et al.  Design and optimization of integrated E-supply chain for agile and environmentally conscious manufacturing , 2006, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[2]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[3]  Antonio Rufián-Lizana,et al.  A characterization of weakly efficient points , 1995, Math. Program..

[4]  Cheng-Liang Chen,et al.  Multiobjective Optimization for a Multienterprise Supply Chain Network , 2003 .

[5]  Eren Özceylan Simultaneous optimization of closed- and open-loop supply chain networks with common components , 2016 .

[6]  Guang Song,et al.  Distribution network design: a literature review and a research agenda , 2015 .

[7]  Şule Önsel Ekici,et al.  Linking to compete: Logistics and global competitiveness interaction , 2016 .

[8]  Reza Tavakkoli-Moghaddam,et al.  A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level , 2013 .

[9]  Maria Grazia Scutellà,et al.  Distribution network design: New problems and related models , 2005, Eur. J. Oper. Res..

[10]  Cheng-Liang Chen,et al.  Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices , 2004, Comput. Chem. Eng..

[11]  Erick C. Jones,et al.  Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality , 2010 .

[12]  Benita M. Beamon,et al.  A multi-objective approach to simultaneous strategic and operational planning in supply chain design , 2000 .

[13]  Ada Alvarez,et al.  A bi-objective supply chain design problem with uncertainty , 2011 .

[14]  David G. Carmichael,et al.  Computation of pareto optima in structural design , 1980 .

[15]  Mir Saman Pishvaee,et al.  A possibilistic programming approach for closed-loop supply chain network design under uncertainty , 2010, Fuzzy Sets Syst..

[16]  Alexander V. Lotov,et al.  Comparison of two Pareto frontier approximations , 2014, Computational Mathematics and Mathematical Physics.

[17]  Zhuo Dai,et al.  Bi-objective closed-loop supply chain network design with risks in a fuzzy environment , 2016 .

[18]  Jafar Razmi,et al.  A bi-objective stochastic optimization model for reliable warehouse network redesign , 2013, Math. Comput. Model..

[19]  Efstratios N. Pistikopoulos,et al.  Environmentally conscious long-range planning and design of supply chain networks , 2005 .

[20]  Reza Zanjirani Farahani,et al.  A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain , 2008 .

[21]  Hassan Javanshir,et al.  Bi-objective supply chain problem using MOPSO and NSGA-II , 2012 .

[22]  Mir Saman Pishvaee,et al.  Environmental supply chain network design using multi-objective fuzzy mathematical programming , 2012 .

[23]  Gerald W. Evans,et al.  A bi-objective reverse logistics network analysis for post-sale service , 2008, Comput. Oper. Res..

[24]  Elias Olivares-Benitez,et al.  A supply chain design problem with facility location and bi-objective transportation choices , 2012 .

[25]  MengChu Zhou,et al.  An integrated e-supply chain model for agile and environmentally conscious manufacturing , 2001 .

[26]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[27]  Marco Melacini,et al.  Evaluating logistics network configurations for a global supply chain , 2010 .

[28]  Rommert Dekker,et al.  Evaluation of multi-objective optimization approaches for solving green supply chain design problems , 2017 .

[29]  Beatriz Sousa Santos,et al.  A taxonomical analysis, current methods and objectives on location-routing problems , 2013, Int. Trans. Oper. Res..

[30]  Bin Fang,et al.  Nonlinear Time Series: Computations and Applications 2012 , 2010 .

[31]  Mir Saman Pishvaee,et al.  A memetic algorithm for bi-objective integrated forward/reverse logistics network design , 2010, Comput. Oper. Res..

[32]  Jason C. H. Chen,et al.  Location and allocation decisions for multi-echelon supply chain network - A multi-objective evolutionary approach , 2013, Expert Syst. Appl..

[33]  Ambrose Goicoechea,et al.  Multiobjective programing in watershed management: A study of the Charleston Watershed , 1976 .

[34]  Saman Hassanzadeh Amin,et al.  A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return , 2013 .

[35]  Saman Hassanzadeh Amin,et al.  An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach , 2012, Expert Syst. Appl..

[36]  Gonzalo Guillén-Gosálbez,et al.  Multi-objective optimization of environmentally conscious chemical supply chains under demand uncertainty , 2013 .

[37]  Christos Zikopoulos,et al.  Reverse supply chains: Effects of collection network and returns classification on profitability , 2015, Eur. J. Oper. Res..

[38]  M. Ehrgott,et al.  Improved ε-Constraint Method for Multiobjective Programming , 2008 .

[39]  K. P. Nurjanni,et al.  Green supply chain design: a mathematical modeling approach based on a multi-objective optimization model , 2017 .

[40]  F. You,et al.  Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input–output analysis , 2012 .

[41]  Shaligram Pokharel,et al.  A two objective model for decision making in a supply chain , 2008 .

[42]  Augusto Q. Novais,et al.  Bi-objective optimization approach to the design and planning of supply chains: Economic versus environmental performances , 2011, Comput. Chem. Eng..