Instantaneous Frequency Estimation Using Stochastic Calculus and Bootstrapping

Stochastic calculus methods are used to estimate the instantaneous frequency of a signal. The frequency is modeled as a polynomial in time. It is assumed that the phase has a Brownian-motion component. Using stochastic calculus, one is able to develop a stochastic differential equation that relates the observations to instantaneous frequency. Pseudo-maximum likelihood estimates are obtained through Girsanov theory and the Radon-Nikodym derivative. Bootstrapping is used to find the bias and the confidence interval of the estimates of the instantaneous frequency. An approximate expression for the Cramér-Rao lower bound is derived. An example is given, and a comparison to existing methods is provided.

[1]  B.L.S. Prakasa Rao,et al.  Semimartingales and their Statistical Inference , 1999 .

[2]  Boualem Boashash,et al.  An efficient real-time implementation of the Wigner-Ville distribution , 1987, IEEE Trans. Acoust. Speech Signal Process..

[3]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[4]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.

[5]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[6]  Bernt Øksendal,et al.  Stochastic differential equations (3rd ed.): an introduction with applications , 1992 .

[7]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[8]  Reinaldo Castro Souza,et al.  A bootstrap simulation study in ARMA (p, q) structures , 1996 .

[9]  B. Øksendal Stochastic Differential Equations , 1985 .

[10]  Boualem Boashash,et al.  Note on the use of the Wigner distribution for time-frequency signal analysis , 1988, IEEE Trans. Acoust. Speech Signal Process..

[11]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[12]  LJubisa Stankovic,et al.  Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length , 1998, IEEE Trans. Signal Process..

[13]  A. Abutaleb,et al.  Malliavin Calculus for the Estimation of the U.S. Dollar/Euro Exchange Rate When the Volatility is Stochastic , 2006 .

[14]  Hao Ling,et al.  Time-Frequency Transforms for Radar Imaging and Signal Analysis , 2002 .

[15]  Benjamin Friedlander,et al.  The discrete polynomial-phase transform , 1995, IEEE Trans. Signal Process..

[16]  A. Abutaleb Instantaneous Frequency Estimation When the Amplitude is a Stochastic Process Using Stochastic Calculus and Bootstrapping , 2005 .

[17]  Braham Barkat Instantaneous frequency estimation of nonlinear frequency-modulated signals in the presence of multiplicative and additive noise , 2001, IEEE Trans. Signal Process..

[18]  Gary H. Glover,et al.  Phase unwrapping of MR phase images using Poisson equation , 1995, IEEE Trans. Image Process..

[19]  Messaoud Benidir,et al.  Polynomial phase signal analysis based on the polynomial derivatives decompositions , 1999, IEEE Trans. Signal Process..

[20]  Boualem Boashash,et al.  The bootstrap and its application in signal processing , 1998, IEEE Signal Process. Mag..

[21]  D. Wehner High Resolution Radar , 1987 .

[22]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[23]  Boaz Porat,et al.  Estimation and classification of polynomial-phase signals , 1991, IEEE Trans. Inf. Theory.

[24]  Ahmed S. Abutaleb,et al.  A genetic algorithm for the maximum likelihood estimation of the parameters of sinusoids in a noisy environment , 1997 .

[25]  N. Yoshida Estimation for diffusion processes from discrete observation , 1992 .

[26]  Benjamin Friedlander,et al.  Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals , 1996, IEEE Trans. Inf. Theory.

[27]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Stuart Golden Estimation and statistical analysis for exponential polynomial signals , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[29]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[30]  A. S. Abutaleb Number theory and bootstrapping for phase unwrapping , 2002 .

[31]  Tze Fen Li Multipath time delay estimation using regression stepwise procedure , 1998, IEEE Trans. Signal Process..

[32]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[33]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[34]  Satoru Goto,et al.  On-line spectral estimation of nonstationary time series based on AR model parameter estimation and order selection with a forgetting factor , 1995, IEEE Trans. Signal Process..

[35]  Asad Zaman,et al.  Statistical Foundations for Econometric Techniques , 1996 .

[36]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[37]  Dimitris N. Politis,et al.  Computer-intensive methods in statistical analysis , 1998, IEEE Signal Process. Mag..