A Wasserstein distance based multiobjective evolutionary algorithm for the risk aware optimization of sensor placement

[1]  Ju Ren,et al.  A Survey on End-Edge-Cloud Orchestrated Network Computing Paradigms , 2019, ACM Comput. Surv..

[2]  Francesco Archetti,et al.  Cost-effective sensors placement and leak localization – the Neptun pilot of the ICeWater project , 2015 .

[3]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[4]  Qingfu Zhang,et al.  On Tchebycheff Decomposition Approaches for Multiobjective Evolutionary Optimization , 2018, IEEE Transactions on Evolutionary Computation.

[5]  Gabriel Peyré,et al.  Wasserstein barycentric coordinates , 2016, ACM Trans. Graph..

[6]  Zoran Kapelan,et al.  Risk-Based Sensor Placement for Contaminant Detection in Water Distribution Systems , 2010 .

[7]  Francesco Archetti,et al.  Risk aware optimization of water sensor placement , 2021, GECCO Companion.

[8]  Thomas Bäck,et al.  Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient , 2019, Swarm Evol. Comput..

[9]  Mohammad Reza Nikoo,et al.  A risk-based multi-objective model for optimal placement of sensors in water distribution system , 2018 .

[10]  Avi Ostfeld,et al.  The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms , 2008 .

[11]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[12]  Kalyanmoy Deb,et al.  Analysing mutation schemes for real-parameter genetic algorithms , 2014, Int. J. Artif. Intell. Soft Comput..

[13]  Kalyanmoy Deb,et al.  A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variables , 2017, Eur. J. Oper. Res..

[14]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[15]  Carlos Henggeler Antunes,et al.  Multi-objective Optimization of Sensor Placement to Detect Contamination in Water Distribution Networks , 2015, GECCO.

[16]  Daniel R. Jiang,et al.  BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization , 2020, NeurIPS.

[17]  Yali Wang,et al.  A Tailored NSGA-III for Multi-objective Flexible Job Shop Scheduling , 2020, 2020 IEEE Symposium Series on Computational Intelligence (SSCI).

[18]  Slobodan P. Simonovic,et al.  Optimization of Water Distribution Network Design Using Differential Evolution , 2010 .

[19]  Murray,et al.  An Overview of the Water Network Tool for Resilience (WNTR) , 2018 .

[20]  Kalyanmoy Deb,et al.  Self-adaptive simulated binary crossover for real-parameter optimization , 2007, GECCO '07.

[21]  Mustafa M. Aral,et al.  A Multi-objective Optimization Algorithm for Sensor Placement in Water Distribution Systems , 2008 .

[22]  Lilian Weng,et al.  From GAN to WGAN , 2019, ArXiv.

[23]  Matt J. Kusner,et al.  Supervised Word Mover's Distance , 2016, NIPS.

[24]  A. E. Eiben,et al.  Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm , 2020, Swarm Evol. Comput..

[25]  Xin Yao,et al.  of Birmingham Quality evaluation of solution sets in multiobjective optimisation , 2019 .

[26]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[27]  Kalyanmoy Deb,et al.  Reference Point Based NSGA-III for Preferred Solutions , 2018, 2018 IEEE Symposium Series on Computational Intelligence (SSCI).

[28]  David W. Jacobs,et al.  Approximate earth mover’s distance in linear time , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Justin Solomon,et al.  Model Fusion with Kullback-Leibler Divergence , 2020, ICML.

[30]  Guido Sanguinetti,et al.  Parameter estimation for biochemical reaction networks using Wasserstein distances , 2019, Journal of Physics A: Mathematical and Theoretical.

[31]  Katherine A. Klise,et al.  Water Network Tool for Resilience (WNTR) User Manual. , 2020 .

[32]  Kalyanmoy Deb,et al.  Pymoo: Multi-Objective Optimization in Python , 2020, IEEE Access.

[33]  Qingfu Zhang,et al.  Multi-objectivization inspired metaheuristics for the sum-of-the-parts combinatorial optimization problems , 2021, Applied Soft Computing.

[34]  Maximilian Balandat,et al.  Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization , 2020, NeurIPS.

[35]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[36]  Qingfu Zhang,et al.  Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model , 2010, IEEE Transactions on Evolutionary Computation.

[37]  Kubilay Atasu,et al.  Linear-Complexity Data-Parallel Earth Mover's Distance Approximations , 2019, ICML.