Approximation of a Thin Plate Spline Smoother Using Continuous Piecewise Polynomial Functions
暂无分享,去创建一个
[1] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[2] T. Manteuffel,et al. FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .
[3] T. A. Manteuffel,et al. First-Order System Least Squares for Velocity-Vorticity-Pressure Form of the Stokes Equations, with Application to Linear Elasticity , 1996 .
[4] R. Arcangeli,et al. Sur la construction de surfaces de classe $C^k$ à partir d’un grand nombre de données de Lagrange , 1987 .
[5] Stephen Roberts,et al. Finite element thin plate splines for surface fitting , 1997 .
[6] Juan José Torrens,et al. Approximation spline de surfaces de type explicite comportant des failles , 1997 .
[7] K. BeatsonR.,et al. Fast Evaluation of Radial Basis Functions , 1998 .
[8] Peter Christen,et al. Scalable parallel algorithms for surface fitting and data mining , 2001, Parallel Comput..
[9] A. Kouibia,et al. Fairness approximation by modified discrete smoothing D m -splines , 1998 .
[10] Stephen Roberts,et al. Finite element thin plate splines for data mining applications , 1998 .
[11] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[12] M. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .
[13] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[14] R. Beatson,et al. Fast evaluation of radial basis functions: I , 1992 .
[15] Dennis D Cox,et al. Convergence Rates for Multivariate Smoothing Spline Functions. , 1982 .
[16] Thomas A. Manteuffel,et al. First-Order System Least Squares (FOSLS) for Planar Linear Elasticity: Pure Traction Problem , 1998 .
[17] Glenn Stone,et al. Computation of Thin-Plate Splines , 1991, SIAM J. Sci. Comput..
[18] R. Beatson,et al. Fast evaluation of radial basis functions : methods for two-dimensional polyharmonic splines , 1997 .
[19] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[20] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[21] Juan José Torrens,et al. Discrete smoothing D m -splines: applications to surface fitting , 1998 .
[22] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[23] T. Manteuffel,et al. First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .
[24] K. Burrage,et al. Parallelization of a finite element surface fitting algorithm for data mining , 2000 .
[25] R. Arcangéli. Some applications of discrete D m splines , 1989 .
[26] G. Wahba. Spline models for observational data , 1990 .
[27] Jean Duchon,et al. Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.
[28] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .