Approximation of a Thin Plate Spline Smoother Using Continuous Piecewise Polynomial Functions

A new smoothing method is proposed which can be viewed as a finite element thin plate spline. This approach combines the favorable properties of finite element surface fitting with those of thin plate splines. The method is based on first order techniques similar to mixed finite element techniques for the biharmonic equation. The existence of a solution to our smoothing problem is demonstrated, and the approximation theory for uniformly spread data is presented in the case of both exact and noisy data. This convergence analysis seems to be the first for a discrete smoothing spline with data perturbed by white noise. Numerical results are presented which verify our theoretical results and demonstrate our method on a large real life data set.

[1]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[2]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[3]  T. A. Manteuffel,et al.  First-Order System Least Squares for Velocity-Vorticity-Pressure Form of the Stokes Equations, with Application to Linear Elasticity , 1996 .

[4]  R. Arcangeli,et al.  Sur la construction de surfaces de classe $C^k$ à partir d’un grand nombre de données de Lagrange , 1987 .

[5]  Stephen Roberts,et al.  Finite element thin plate splines for surface fitting , 1997 .

[6]  Juan José Torrens,et al.  Approximation spline de surfaces de type explicite comportant des failles , 1997 .

[7]  K. BeatsonR.,et al.  Fast Evaluation of Radial Basis Functions , 1998 .

[8]  Peter Christen,et al.  Scalable parallel algorithms for surface fitting and data mining , 2001, Parallel Comput..

[9]  A. Kouibia,et al.  Fairness approximation by modified discrete smoothing D m -splines , 1998 .

[10]  Stephen Roberts,et al.  Finite element thin plate splines for data mining applications , 1998 .

[11]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[12]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  R. Beatson,et al.  Fast evaluation of radial basis functions: I , 1992 .

[15]  Dennis D Cox,et al.  Convergence Rates for Multivariate Smoothing Spline Functions. , 1982 .

[16]  Thomas A. Manteuffel,et al.  First-Order System Least Squares (FOSLS) for Planar Linear Elasticity: Pure Traction Problem , 1998 .

[17]  Glenn Stone,et al.  Computation of Thin-Plate Splines , 1991, SIAM J. Sci. Comput..

[18]  R. Beatson,et al.  Fast evaluation of radial basis functions : methods for two-dimensional polyharmonic splines , 1997 .

[19]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[20]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[21]  Juan José Torrens,et al.  Discrete smoothing D m -splines: applications to surface fitting , 1998 .

[22]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[23]  T. Manteuffel,et al.  First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity , 1997 .

[24]  K. Burrage,et al.  Parallelization of a finite element surface fitting algorithm for data mining , 2000 .

[25]  R. Arcangéli Some applications of discrete D m splines , 1989 .

[26]  G. Wahba Spline models for observational data , 1990 .

[27]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[28]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .