Adaptive control and filtering for closed-loop adaptive-optical wavefront reconstruction

This paper discusses the application of adaptive control methods in the Atmospheric Simulation and Adaptiveoptics Laboratory Testbed at the Starfire Optical Range at the Air Force Research Laboratory, Kirtland AFB. Adaptive compensation is useful in adaptive optics applications where the wavefronts vary significantly from one frame to the next or where wind velocities and the strength of atmospheric turbulence change rapidly, rendering classical fixed-gain reconstruction algorithms far from optimal. The experimental results illustrate the capability of the adaptive control scheme to increase Strehl ratios and reduce jitter.

[1]  Nikos P. Pitsianis,et al.  Optimizing closed-loop adaptive optics performance using multiple control bandwidths , 1994, Astronomical Telescopes and Instrumentation.

[2]  Tsu-Chin Tsao,et al.  Adaptive control of a MEMS steering mirror for suppression of laser beam jitter , 2005, Proceedings of the 2005, American Control Conference, 2005..

[3]  C.-C. Chang,et al.  Parallel control loops based on spatial subband processing for adaptive optics , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[4]  B L Ellerbroek,et al.  Adaptive optics: wave-front correction by use of adaptive filtering and control. , 2000, Applied optics.

[5]  S. Gibson,et al.  Adaptive optics with adaptive filtering and control , 2004, Proceedings of the 2004 American Control Conference.

[6]  Brent L. Ellerbroek,et al.  Real-time adaptive optimization of wavefront reconstruction algorithms for closed-loop adaptive optical systems , 1998, Astronomical Telescopes and Instrumentation.

[7]  S. Gibson,et al.  Adaptive filtering and control for wavefront reconstruction and jitter control in adaptive optics , 2005, Proceedings of the 2005, American Control Conference, 2005..

[8]  Gerard Rousset,et al.  First diffraction-limited astronomical images with adaptive optics , 1990, Astronomical Telescopes and Instrumentation.

[9]  James M. Spinhirne,et al.  Two generations of laser-guide-star adaptive-optics experiments at the Starfire Optical Range , 1994 .

[10]  C.-C. Chang,et al.  Adaptive optics with a new modal decomposition of actuator and sensor spaces , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[11]  S. Ridgway Adaptive Optics , 2022 .

[12]  Troy A. Rhoadarmer,et al.  Development of a self-referencing interferometer wavefront sensor , 2004, SPIE Optics + Photonics.

[13]  C.-C. Chang,et al.  Adaptive optics: wavefront reconstruction by adaptive filtering and control , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[14]  Michael Lloyd-Hart SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS , 2007 .

[15]  Robert Q. Fugate,et al.  Performance of wavefront sensors in strong scintillation , 2003, SPIE Astronomical Telescopes + Instrumentation.

[16]  Yu-Tai Liu,et al.  Adaptive control in adaptive optics for directed-energy systems , 2007 .

[17]  Terry J. Brennan Stability margin loss due to wavefront sensor misregistration: amelioration with spatial filtering techniques , 2001, SPIE Defense + Commercial Sensing.

[18]  Troy A. Rhoadarmer,et al.  Simple laboratory system for generating well-controlled atmospheric-like turbulence , 2004, SPIE Optics + Photonics.

[19]  Steven M. Ebstein,et al.  Pseudo-random phase plates , 2002, Optics + Photonics.