High Ampacity Carbon Nanotube Materials

Constant evolution of technology is leading to the improvement of electronical devices. Smaller, lighter, faster, are but a few of the properties that have been constantly improved, but these developments come hand in hand with negative downsides. In the case of miniaturization, this shortcoming is found in the inherent property of conducting materials—the limit of current density they can withstand before failure. This property, known as ampacity, is close to reaching its limits at the current scales of use, and the performances of some conductors such as gold or copper suffer severely from it. The need to find alternative conductors with higher ampacity is, therefore, an urgent need, but at the same time, one which requires simultaneous search for decreased density if it is to succeed in an ever-growing electronical world. The uses of these carbon nanotube-based materials, from airplane lightning strike protection systems to the microchip industry, will be evaluated, failure mechanisms at maximum current densities explained, limitations and difficulties in ampacity measurements with different size ranges evaluated, and future lines of research suggested. This review will therefore provide an in-depth view of the rare properties that make carbon nanotubes and their hybrids unique.

[1]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[2]  Kwon,et al.  Fractional quantum conductance in carbon nanotubes , 2000, Physical review letters.

[3]  R. Khanna,et al.  Control of tube parameters on SWCNT bundle interconnect delay and power dissipation , 2013 .

[4]  T. Chou,et al.  Immunotherapy of cancer. , 1970, British medical journal.

[5]  W. Xu,et al.  Effect of electrical current on tribological property of Cu matrix composite reinforced by carbon nanotubes , 2011 .

[6]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[7]  A. Naeemi,et al.  Cu Interconnect Limitations and Opportunities for SWNT Interconnects at the End of the Roadmap , 2013, IEEE Transactions on Electron Devices.

[8]  Wei Zhou,et al.  Effects of Ni-coated Carbon Nanotubes addition on the electromigration of Sn–Ag–Cu solder joints , 2013 .

[9]  J. Black,et al.  Electromigration—A brief survey and some recent results , 1969 .

[10]  T. V. Venkatesha,et al.  Electrodeposition and properties of Zn–Ni–CNT composite coatings , 2009 .

[11]  Qing Huo Liu,et al.  Electrothermal Characterization of Single-Walled Carbon Nanotube (SWCNT) Interconnect Arrays , 2009, IEEE Transactions on Nanotechnology.

[12]  S. Ramakrishna,et al.  Carbon nanotube hybrid nanostructures: future generation conducting materials , 2016 .

[13]  Y. Ikuhara,et al.  Effect of alloying elements on the interfacial bonding strength and electric conductivity of carbon nano-fiber reinforced Cu matrix composites , 2007 .

[14]  Gang Chen,et al.  Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. , 2004, The Analyst.

[16]  Katharina Wagner,et al.  Design And Development Of Aircraft Systems , 2016 .

[17]  X. B. Zhang,et al.  Tribological properties of carbon-nanotube-reinforced copper composites , 2001 .

[18]  Faliang Li,et al.  Carbon Nanotube Reinforced Ceramic Composites: A Review , 2014, Interceram - International Ceramic Review.

[19]  M. Polcari,et al.  Observation of electromigration in heavily doped polycrystalline silicon thin films , 1980 .

[20]  J. Kong,et al.  Spinning and Processing Continuous Yarns from 4‐Inch Wafer Scale Super‐Aligned Carbon Nanotube Arrays , 2006 .

[21]  M. Saka,et al.  Basis of Atomic Diffusion , 2010 .

[22]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[23]  Rolf Landauer Geometry and boundary conditions in the Das-Peierls electromigration theorem , 1977 .

[24]  K. Hata,et al.  The influence of Cu electrodeposition parameters on fabricating structurally uniform CNT-Cu composite wires , 2017 .

[25]  J. Byun,et al.  Electrodeposition and mechanical properties of Ni–carbon nanotube nanocomposite coatings , 2008 .

[26]  F. Paraguay-Delgado,et al.  New organometallic precursor catalysts applied to MWCNT synthesis by spray-pirolysis , 2006 .

[27]  G. Beyer,et al.  Electrical characterization of CNT contacts with Cu Damascene top contact , 2013 .

[28]  M. Monthioux,et al.  A significant improvement of both yield and purity during SWCNT synthesis via the electric arc process , 2007 .

[29]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[30]  K. Hata,et al.  Electrical performance of lightweight CNT-Cu composite wires impacted by surface and internal Cu spatial distribution , 2017, Scientific Reports.

[31]  B. P. Wilson,et al.  Carbon nanotube-copper composites by electrodeposition on carbon nanotube fibers , 2016 .

[32]  Dong Su Lee,et al.  Metal nanofibrils embedded in long free-standing carbon nanotube fibers with a high critical current density , 2018, NPG Asia Materials.

[33]  Qingwen Li,et al.  Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity. , 2018, ACS applied materials & interfaces.

[34]  Jun Kim,et al.  MWCNT synthesis over Fe-BTC as a catalyst/carbon source via CVD , 2011 .

[35]  J. J. Clement,et al.  Electromigration in copper conductors , 1995 .

[36]  E. S. Meieran,et al.  Electromigration in Thin Al Films , 1969 .

[37]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[38]  Takeo Yamada,et al.  One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite , 2013, Nature Communications.

[39]  T. Fisher,et al.  Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes , 2006 .

[40]  Paul S. Ho,et al.  Electromigration reliability issues in dual-damascene Cu interconnections , 2002, IEEE Trans. Reliab..

[41]  H. B. Huntington,et al.  Current-induced marker motion in gold wires☆ , 1961 .

[42]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[43]  T. Ebbesen,et al.  Capillarity and Wetting of Carbon Nanotubes , 1994, Science.

[44]  J. J. Vilatela,et al.  Yarn‐Like Carbon Nanotube Fibers , 2010, Advanced materials.

[45]  Feng Hou,et al.  Continuous Multilayered Carbon Nanotube Yarns , 2010, Advanced materials.

[46]  Tomohiro Ohta,et al.  WNx diffusion barriers between Si and Cu , 1996 .

[47]  D. S. Misra,et al.  Electrical transport and electromigration studies on nickel encapsulated carbon nanotubes: possible future interconnects , 2013, Nanotechnology.

[48]  K. Koziol,et al.  Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. , 2011, ACS nano.

[49]  Levente Hufnagel,et al.  A New Method to Evaluate Habitat Status Based On the Use of Data On Oribatid Mites (Acari: Oribatida) , 2011, HAICTA.

[50]  S. Xie,et al.  Carbon-nanotube metal-matrix composites prepared by electroless plating , 2000 .

[51]  Robert F. Singer,et al.  CNT reinforced light metal composites produced by melt stirring and by high pressure die casting , 2010 .

[52]  Tu Electromigration in stressed thin films. , 1992, Physical review. B, Condensed matter.

[53]  M. Endo,et al.  Cu–MWCNT Composite Films Fabricated by Electrodeposition , 2010 .

[54]  M. Meyyappan,et al.  Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays , 2004 .

[55]  R. Rosenberg,et al.  Electromigration Damage in Aluminum Film Conductors , 1970 .

[56]  K. Hata,et al.  Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. , 2014, Nanoscale.

[57]  E. P. Honig,et al.  Electromigration and self-diffusion in ionic melts , 1966 .

[58]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .

[59]  A. Esawi,et al.  Fabrication and properties of dispersed carbon nanotube–aluminum composites , 2009 .

[60]  Chonggui Li,et al.  A Novel Melt Processing for Mg Matrix Composites Reinforced by Multiwalled Carbon Nanotubes , 2016 .

[61]  K. Hata,et al.  Copper/carbon nanotube composites: research trends and outlook , 2018, Royal Society Open Science.

[62]  I. Puchades,et al.  Carbon nanotube wires with continuous current rating exceeding 20 Amperes , 2017 .

[63]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[64]  K. Jiang,et al.  Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method , 2010, Nanotechnology.

[65]  J. Black Electromigration failure modes in aluminum metallization for semiconductor devices , 1969 .

[66]  Emmanuel Flahaut,et al.  CARBON NANOTUBE-METAL-OXIDE NANOCOMPOSITES: MICROSTRUCTURE, ELECTRICAL CONDUCTIVITY AND MECHANICAL PROPERTIES , 2000 .

[67]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[68]  Sefaattin Tongay,et al.  Contents list. , 2016, Nanoscale.

[69]  Leiji Zhou,et al.  Electrodeposited nickel composites containing carbon nanotubes , 2002 .

[70]  Xiaojun Wang,et al.  A Novel Method to Fabricate CNT/Mg–6Zn Composites with High Strengthening Efficiency , 2014, Acta Metallurgica Sinica (English Letters).

[71]  Henry C. de Groh,et al.  Highly Conductive Wire: Cu Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity , 2016 .

[73]  M. Nascimento,et al.  The nature of the chemical bond , 2008 .

[74]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[75]  S. R. Bakshi,et al.  Carbon nanotube reinforced metal matrix composites - a review , 2010 .

[76]  Ákos Kukovecz,et al.  Optimization of CCVD synthesis conditions for single-wall carbon nanotubes by statistical design of experiments (DoE) , 2005 .

[77]  Honglin Luo,et al.  Effects of fiber volume fraction, hot pressing parameters and alloying elements on tensile strength of carbon fiber reinforced copper matrix composite prepared by continuous three-step electrodeposition , 2000 .

[78]  T. Ono,et al.  Electrodeposition of carbon nanotubes-Cu composite for microelectrical elements applications , 2016, 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).

[79]  T. Takagi,et al.  Structure–property relationships in thermally-annealed multi-walled carbon nanotubes , 2014 .

[80]  J. J. Clement,et al.  Electromigration modeling for integrated circuit interconnect reliability analysis , 2001 .

[81]  D. Tsentalovich,et al.  High‐Ampacity Power Cables of Tightly‐Packed and Aligned Carbon Nanotubes , 2014, 1402.3608.

[82]  L. Ladani The Potential for Metal–Carbon Nanotubes Composites as Interconnects , 2018, Journal of Electronic Materials.

[83]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[84]  Langer,et al.  Quantum transport in a multiwalled carbon nanotube. , 1996, Physical review letters.

[85]  Kaustav Banerjee,et al.  Are carbon nanotubes the future of VLSI interconnections? , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[86]  Development and performance of the nanoworkbench: A four tip STM for conductivity measurements down to submicrometer scales , 2004, cond-mat/0411127.

[87]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[88]  Rolf E. Hummel,et al.  Electromigration in integrated circuits , 1997 .

[89]  Feng Zhou,et al.  Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings , 2006 .

[90]  J. Tan,et al.  Metal–nanocarbon contacts , 2014 .

[91]  A. Windle,et al.  Properties of composites of carbon nanotube fibres , 2009 .

[92]  Jinping Xiong,et al.  The effects of electrodeposition current density on properties of Ni–CNTs composite coatings , 2008 .

[93]  Qingwen Li,et al.  Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. , 2011, Nanoscale.

[94]  E. Bekyarova,et al.  Effect of atomic interconnects on percolation in single-walled carbon nanotube thin film networks. , 2014, Nano letters.

[95]  C. Berger,et al.  Room Temperature Ballistic Conduction in Carbon Nanotubes , 2002, cond-mat/0211515.

[96]  Pugach Nataliya,et al.  International roadmap for devices and systems. Cryogenic electronics and quantum information processing. 2018 Update , 2019 .

[97]  P. Chan,et al.  Electromigration Studies of Cu/Carbon Nanotube Composite Interconnects Using Blech Structure , 2008, IEEE Electron Device Letters.

[98]  N. Zhao,et al.  An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al‐Matrix Composites , 2007 .

[99]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[100]  B. Sunil,et al.  An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg , 2018 .

[101]  M. Endo,et al.  Cu/Multiwalled Carbon Nanotube Composite Films Fabricated by Pulse-Reverse Electrodeposition , 2011 .

[102]  Yeqing Wang,et al.  Multiphysics analysis of lightning strike damage in laminated carbon/glass fiber reinforced polymer matrix composite materials: A review of problem formulation and computational modeling , 2017 .

[103]  J. Howell,et al.  Diffusion in Solids , 1984, Materials Science Forum.

[104]  Cary Y. Yang,et al.  Electrical properties of carbon nanotube via interconnects for 30 nm linewidth and beyond , 2016, Microelectron. Reliab..

[105]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[106]  R. Ishihara,et al.  Carbon nanotube vertical interconnects fabricated at temperatures as low as 350 °C , 2014 .

[107]  G. Duesberg,et al.  Carbon nanotubes for interconnect applications , 2002, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[108]  A. Asenov,et al.  Understanding Electromigration in Cu-CNT Composite Interconnects: A Multiscale Electrothermal Simulation Study , 2018, IEEE Transactions on Electron Devices.