MCMC-based particle filtering for tracking a variable number of interacting targets

We describe a particle filter that effectively deals with interacting targets, targets that are influenced by the proximity and/or behavior of other targets. The particle filter includes a Markov random field (MRF) motion prior that helps maintain the identity of targets throughout an interaction, significantly reducing tracker failures. We show that this MRF prior can be easily implemented by including an additional interaction factor in the importance weights of the particle filter. However, the computational requirements of the resulting multitarget filter render it unusable for large numbers of targets. Consequently, we replace the traditional importance sampling step in the particle filter with a novel Markov chain Monte Carlo (MCMC) sampling step to obtain a more efficient MCMC-based multitarget filter. We also show how to extend this MCMC-based filter to address a variable number of interacting targets. Finally, we present both qualitative and quantitative experimental results, demonstrating that the resulting particle filters deal efficiently and effectively with complicated target interactions.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  D. Reid An algorithm for tracking multiple targets , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[3]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[4]  Jeremy MG Taylor,et al.  Robust Statistical Modeling Using the t Distribution , 1989 .

[5]  Rachid Deriche,et al.  Tracking line segments , 1990, Image Vis. Comput..

[6]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[7]  Ingemar J. Cox,et al.  Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..

[8]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[9]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[10]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[11]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[12]  N. G. Best,et al.  Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .

[13]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[14]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[15]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[16]  Samuel S. Blackman,et al.  Design and Analysis of Modern Tracking Systems , 1999 .

[17]  A. Doucet,et al.  Sequential MCMC for Bayesian model selection , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[18]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[19]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .

[20]  P. Green,et al.  Trans-dimensional Markov chain Monte Carlo , 2000 .

[21]  Manuela M. Veloso,et al.  Fast and inexpensive color image segmentation for interactive robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[22]  Wolfram Burgard,et al.  Tracking multiple moving targets with a mobile robot using particle filters and statistical data association , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[23]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[24]  Harry Shum,et al.  Image segmentation by data driven Markov chain Monte Carlo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Manuela M. Veloso,et al.  Automatically tracking and analyzing the behavior of live insect colonies , 2001, AGENTS '01.

[26]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[27]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[29]  Walter R. Gilks,et al.  RESAMPLE-MOVE Filtering with Cross-Model Jumps , 2001, Sequential Monte Carlo Methods in Practice.

[30]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[31]  Andrew Calway,et al.  Tracking Many Objects Using Subordinated Condensation , 2002, BMVC.

[32]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[33]  Cristian Sminchisescu,et al.  Kinematic jump processes for monocular 3D human tracking , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[34]  Frank Dellaert,et al.  Efficient particle filter-based tracking of multiple interacting targets using an MRF-based motion model , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[35]  Patrick Pérez,et al.  Maintaining multimodality through mixture tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[36]  Simon J. Godsill,et al.  Radial basis function regression using trans-dimensional sequential Monte Carlo , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[37]  Hedvig Kjellström,et al.  Tracking Random Sets of Vehicles in Terrain , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[38]  H. Sidenbladh,et al.  Particle Filtering for Random Sets , 2003 .

[39]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[40]  Frank Dellaert,et al.  Robust Generative Subspace Modeling: The Subspace t Distribution , 2004 .

[41]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2004, International Journal of Computer Vision.

[42]  Ramakant Nevatia,et al.  Tracking multiple humans in crowded environment , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[43]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .