Optical tweezers in single-molecule biophysics

Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein-nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.

[1]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[2]  M. Mézard,et al.  Elastic rod model of a supercoiled DNA molecule , 1998, cond-mat/9904018.

[3]  E. Peterman,et al.  Optical tweezers analysis of DNA-protein complexes. , 2014, Chemical reviews.

[4]  Michelle D. Wang,et al.  Mechanochemical kinetics of transcription elongation. , 2007, Physical review letters.

[5]  Rod Balhorn,et al.  Processive translocation and DNA unwinding by individual RecBCD enzyme molecules , 2001, Nature.

[6]  H. Vogel,et al.  Labeling of fusion proteins with synthetic fluorophores in live cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Ulrich Bockelmann,et al.  Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy , 2013, Proceedings of the National Academy of Sciences.

[8]  I. Tinoco,et al.  RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP , 2006, Nature.

[9]  Scott Forth,et al.  Passive torque wrench and angular position detection using a single-beam optical trap. , 2010, Optics letters.

[10]  L. Mayne,et al.  The nature of protein folding pathways , 2014, Proceedings of the National Academy of Sciences.

[11]  Y. Chemla,et al.  Elasticity of the transition state for oligonucleotide hybridization , 2016, Nucleic acids research.

[12]  J. Spudich,et al.  Movement of myosin-coated fluorescent beads on actin cables in vitro , 1983, Nature.

[13]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[14]  Ignacio Tinoco,et al.  The Ribosome Uses Two Active Mechanisms to Unwind mRNA During Translation , 2011, Nature.

[15]  M. Hegner,et al.  Translation and folding of single proteins in real time , 2017, Proceedings of the National Academy of Sciences.

[16]  Karolin Luger,et al.  Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss , 2013, Nature Communications.

[17]  Hiroto Tanaka,et al.  Simultaneous Observation of Individual ATPase and Mechanical Events by a Single Myosin Molecule during Interaction with Actin , 1998, Cell.

[18]  Steve Pressé,et al.  The ClpXP Protease Unfolds Substrates Using a Constant Rate of Pulling but Different Gears , 2013, Cell.

[19]  Felix Ritort,et al.  Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy. , 2016, Annual review of biophysics.

[20]  Derek N. Fuller,et al.  Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability , 2007, Proceedings of the National Academy of Sciences.

[21]  I. Rouzina,et al.  Entropy and heat capacity of DNA melting from temperature dependence of single molecule stretching. , 2001, Biophysical journal.

[22]  Michael T. Woodside,et al.  Direct observation of transition paths during the folding of proteins and nucleic acids , 2016, Science.

[23]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[24]  C. Bustamante,et al.  Non-equilibrium dynamics of a nascent polypeptide during translation suppress its misfolding , 2019, Nature Communications.

[25]  T. Kapoor,et al.  Force-dependent stimulation of RNA unwinding by SARS-CoV-2 nsp13 helicase , 2020, Biophysical Journal.

[26]  Gijs J. L. Wuite,et al.  Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation , 2006, Nature.

[27]  Mario J. Avellaneda,et al.  Processive extrusion of polypeptide loops by a Hsp100 disaggregase , 2020, Nature.

[28]  C. Jarzynski Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach , 1997, cond-mat/9707325.

[29]  T. Ha,et al.  Direct imaging of single UvrD helicase dynamics on long single-stranded DNA , 2013, Nature Communications.

[30]  Yeonee Seol,et al.  Elastic properties of a single-stranded charged homopolymeric ribonucleotide. , 2004, Physical review letters.

[31]  Matthew J Comstock,et al.  High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection. , 2017, Methods in molecular biology.

[32]  K. Schulten,et al.  Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction , 2007, Science.

[33]  David Keller,et al.  Single-molecule studies of the effect of template tension on T7 DNA polymerase activity , 2000, Nature.

[34]  Ying Gao,et al.  Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. , 2012, The Review of scientific instruments.

[35]  M. Stevens,et al.  Single-stranded nucleic acid elasticity arises from internal electrostatic tension , 2017, Proceedings of the National Academy of Sciences.

[36]  I. Tinoco,et al.  Mechanical force releases nascent chain–mediated ribosome arrest in vitro and in vivo , 2015, Science.

[37]  T. Elston,et al.  Force generation in RNA polymerase. , 1998, Biophysical journal.

[38]  G. Hummer,et al.  Theory, analysis, and interpretation of single-molecule force spectroscopy experiments , 2008, Proceedings of the National Academy of Sciences.

[39]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[40]  Adrian O. Olivares,et al.  Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine , 2011, Cell.

[41]  Michelle D. Wang,et al.  Twist-stretch coupling and phase transition during DNA supercoiling. , 2009, Physical chemistry chemical physics : PCCP.

[42]  Michelle D. Wang,et al.  Transcription Under Torsion , 2013, Science.

[43]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[44]  Christian M. Kaiser,et al.  The Ribosome Cooperates with a Chaperone to Guide Multi-domain Protein Folding. , 2019, Molecular cell.

[45]  Germanium nanospheres for ultraresolution picotensiometry of kinesin motors , 2021, Science.

[46]  V. Hilser,et al.  Single-Molecule Chemo-Mechanical Spectroscopy Provides Structural Identity of Folding Intermediates. , 2016, Biophysical journal.

[47]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[48]  W. Denk,et al.  Optical measurement of picometer displacements of transparent microscopic objects. , 1990, Applied optics.

[49]  Polly M Fordyce,et al.  Simultaneous, coincident optical trapping and single-molecule fluorescence , 2004, Nature Methods.

[50]  Elizabeth A. Shank,et al.  Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers , 2008, European Biophysics Journal.

[51]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[52]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[53]  Benjamin P. B. Downing,et al.  Stretching single DNA molecules to demonstrate high‐force capabilities of holographic optical tweezers , 2010, Journal of biophotonics.

[54]  Michelle D. Wang,et al.  T7 replisome directly overcomes DNA damage , 2015, Nature Communications.

[55]  I. Tinoco,et al.  Ribosome Excursions during mRNA Translocation Mediate Broad Branching of Frameshift Pathways , 2015, Cell.

[56]  C. Bustamante,et al.  An integrated laser trap/flow control video microscope for the study of single biomolecules. , 2000, Biophysical journal.

[57]  Ignacio Tinoco,et al.  Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. , 2006, Biophysical journal.

[58]  E. Evans,et al.  Dynamic strength of molecular adhesion bonds. , 1997, Biophysical journal.

[59]  S. Tans,et al.  Direct Observation of Chaperone-Induced Changes in a Protein Folding Pathway , 2007, Science.

[60]  T. Ha,et al.  SSB Functions as a Sliding Platform that Migrates on DNA via Reptation , 2011, Cell.

[61]  Zev Bryant,et al.  Gold rotor bead tracking (AuRBT) for high-speed measurements of DNA twist, torque, and extension , 2014, Nature Methods.

[62]  C. Bustamante,et al.  The mechanochemistry of molecular motors. , 2000, Biophysical journal.

[63]  M. Rief,et al.  Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments , 2016, Proceedings of the National Academy of Sciences.

[64]  Carlos Bustamante,et al.  Differential detection of dual traps improves the spatial resolution of optical tweezers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Michelle D. Wang,et al.  High resolution dynamic mapping of histone-DNA interactions in a nucleosome , 2008, Nature Structural &Molecular Biology.

[66]  Steven M Block,et al.  Passive all-optical force clamp for high-resolution laser trapping. , 2005, Physical review letters.

[67]  Michelle D. Wang,et al.  Specific contributions of histone tails and their acetylation to the mechanical stability of nucleosomes. , 2005, Journal of molecular biology.

[68]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[69]  Peter Searson,et al.  Magnetic tweezers measurement of single molecule torque. , 2009, Nano letters.

[70]  Carlos Bustamante,et al.  Optical-trap force transducer that operates by direct measurement of light momentum. , 2003, Methods in enzymology.

[71]  S. Kowalczykowski,et al.  Single-Molecule Imaging of DNA Pairing by RecA Reveals a 3-Dimensional Homology Search , 2011, Nature.

[72]  Francesco S. Pavone,et al.  Calibration of optical tweezers with positional detection in the back focal plane , 2006, physics/0603037.

[73]  Gerhard Hummer,et al.  Intrinsic rates and activation free energies from single-molecule pulling experiments. , 2006, Physical review letters.

[74]  Jacob W J Kerssemakers,et al.  Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments , 2010, Nature Methods.

[75]  I. Tinoco,et al.  The Ribosome Modulates Nascent Protein Folding , 2011, Science.

[76]  T. Ha,et al.  Ultrafast redistribution of E. coli SSB along long single-stranded DNA via intersegment transfer. , 2014, Journal of molecular biology.

[77]  N. Cozzarelli,et al.  DNA overwinds when stretched , 2006, Nature.

[78]  Y. Chemla,et al.  Sequence-dependent base pair stepping dynamics in XPD helicase unwinding , 2013, eLife.

[79]  S Walter Englander,et al.  Protein Folding-How and Why: By Hydrogen Exchange, Fragment Separation, and Mass Spectrometry. , 2016, Annual review of biophysics.

[80]  Michelle D. Wang,et al.  Transcription factor regulation of RNA polymerase’s torque generation capacity , 2019, Proceedings of the National Academy of Sciences.

[81]  Aidan I. Brown,et al.  High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier , 2019, bioRxiv.

[82]  T. Ha,et al.  Direct observation of structure-function relationship in a nucleic acid–processing enzyme , 2015, Science.

[83]  Adam G. Hendricks,et al.  Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors , 2012, Proceedings of the National Academy of Sciences.

[84]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .

[85]  Michelle D. Wang,et al.  Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[87]  E. Peterman,et al.  Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution , 2014, Proceedings of the National Academy of Sciences.

[88]  Yann R Chemla,et al.  Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. , 2009, Biophysical journal.

[89]  Charles C. Richardson,et al.  University of Groningen Single-Molecule Kinetics of λ Exonuclease Reveal Base Dependence and Dynamic Disorder , 2018 .

[90]  C. Bustamante,et al.  Methods in statistical kinetics. , 2010, Methods in enzymology.

[91]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[92]  F. Ritort,et al.  A Temperature-Jump Optical Trap for Single-Molecule Manipulation. , 2015, Biophysical journal.

[93]  J. Onuchic,et al.  Funnels, pathways, and the energy landscape of protein folding: A synthesis , 1994, Proteins.

[94]  J. Marko,et al.  Remote control of DNA-acting enzymes by varying the Brownian dynamics of a distant DNA end , 2012, Proceedings of the National Academy of Sciences.

[95]  C. Bustamante,et al.  Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism , 2013, eLife.

[96]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[97]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[98]  Nancy R Forde,et al.  Mechanical processes in biochemistry. , 2004, Annual review of biochemistry.

[99]  Y. Chemla,et al.  Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways , 2015, eLife.

[100]  M. Schnitzer,et al.  Statistical kinetics of processive enzymes. , 1995, Cold Spring Harbor symposia on quantitative biology.

[101]  G. I. Bell Models for the specific adhesion of cells to cells. , 1978, Science.

[102]  E. Siggia,et al.  Fluctuations and supercoiling of DNA. , 1994, Science.

[103]  Mark J. Schnitzer,et al.  Single kinesin molecules studied with a molecular force clamp , 1999, Nature.

[104]  M. Rief,et al.  Rigid DNA Beams for High-Resolution Single-Molecule Mechanics** , 2013, Angewandte Chemie.

[105]  Michelle D. Wang,et al.  Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules , 2006, Nature Structural &Molecular Biology.

[106]  Michelle D. Wang,et al.  Single-Molecule Studies Reveal Dynamics of DNA Unwinding by the Ring-Shaped T7 Helicase , 2007, Cell.

[107]  K. Murakami,et al.  Single-molecule imaging of RNA polymerase-DNA interactions in real time. , 1999, Biophysical journal.

[108]  Ignacio Tinoco,et al.  Following translation by single ribosomes one codon at a time , 2008, Nature.

[109]  Dwight L. Anderson,et al.  Substrate Interactions and Promiscuity in a Viral DNA Packaging Motor , 2009, Nature.

[110]  G. Wadhams,et al.  Stoichiometry and turnover in single, functioning membrane protein complexes , 2006, Nature.

[111]  Steven M Block,et al.  Forward and reverse motion of single RecBCD molecules on DNA. , 2004, Biophysical journal.

[112]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[113]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[114]  Joshua W. Shaevitz,et al.  Backtracking by single RNA polymerase molecules observed at near-base-pair resolution , 2003, Nature.

[115]  Ronald J. Baskin,et al.  DNA Unwinding Heterogeneity by RecBCD Results from Static Molecules Able to Equilibrate , 2013, Nature.

[116]  Michael D. Stone,et al.  Structural transitions and elasticity from torque measurements on DNA , 2003, Nature.

[117]  Robert A. Forties,et al.  Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays , 2014, Nature nanotechnology.

[118]  E. Evans Probing the relation between force--lifetime--and chemistry in single molecular bonds. , 2001, Annual review of biophysics and biomolecular structure.

[119]  T. Ha,et al.  Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy , 2019, Proceedings of the National Academy of Sciences.

[120]  R. M. Simmons,et al.  Elasticity and unfolding of single molecules of the giant muscle protein titin , 1997, Nature.

[121]  Michelle D. Wang,et al.  ATP-Induced Helicase Slippage Reveals Highly Coordinated Subunits , 2011, Nature.

[122]  Michael Vershinin,et al.  A comparison of step-detection methods: how well can you do? , 2008, Biophysical journal.

[123]  R. T. Tregear,et al.  Movement and force produced by a single myosin head , 1995, Nature.

[124]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[125]  C. Jarzynski,et al.  Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies , 2005, Nature.

[126]  Elizabeth A. Shank,et al.  The folding cooperativity of a protein is controlled by its chain topology , 2010, Nature.

[127]  Nam Ki Lee,et al.  Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study , 2017, Nature Methods.

[128]  I. Tinoco,et al.  Full molecular trajectories of RNA polymerase at single base-pair resolution , 2018, Proceedings of the National Academy of Sciences.

[129]  Carlos Bustamante,et al.  Inter-Subunit Coordination in a Homomeric Ring-ATPase , 2009, Nature.

[130]  E. Schäffer,et al.  Germanium nanospheres for ultraresolution picotensiometry of kinesin motors , 2020, Science.

[131]  M. Rief,et al.  The Complex Folding Network of Single Calmodulin Molecules , 2011, Science.

[132]  Polly M Fordyce,et al.  Combined optical trapping and single-molecule fluorescence , 2003, Journal of biology.

[133]  Christoph F. Schmidt,et al.  Moving into the cell: single-molecule studies of molecular motors in complex environments , 2011, Nature Reviews Molecular Cell Biology.

[134]  C. Bustamante,et al.  Tension induces a base-paired overstretched DNA conformation , 2012, Proceedings of the National Academy of Sciences.

[135]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[136]  M. Woodside,et al.  Protein misfolding occurs by slow diffusion across multiple barriers in a rough energy landscape , 2015, Proceedings of the National Academy of Sciences.

[137]  Carlos Bustamante,et al.  Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner , 2007, Nature.

[138]  T. Perkins Ångström-precision optical traps and applications. , 2014, Annual review of biophysics.

[139]  P. Nelson,et al.  Torsional directed walks, entropic elasticity, and DNA twist stiffness. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[140]  Michelle D. Wang,et al.  Synergistic Coordination of Chromatin Torsional Mechanics and Topoisomerase Activity , 2019, Cell.

[141]  Martin Karplus,et al.  Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins , 2019, Proceedings of the National Academy of Sciences.

[142]  G J Brakenhoff,et al.  Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. , 1993, Cytometry.

[143]  C. Bustamante,et al.  A Viral Packaging Motor Varies Its DNA Rotation and Step Size to Preserve Subunit Coordination as the Capsid Fills , 2014, Cell.

[144]  M. Fisher,et al.  Molecular motors: a theorist's perspective. , 2007, Annual review of physical chemistry.

[145]  T. Sosnick,et al.  Protein folding intermediates: native-state hydrogen exchange. , 1995, Science.

[146]  T. Ha,et al.  Single-molecule fluorescence resonance energy transfer. , 2001, Methods.

[147]  Michael D. Stone,et al.  Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[148]  Scott Forth,et al.  Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection , 2007, Nature Methods.

[149]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[150]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[151]  Gijs J. L. Wuite,et al.  See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins , 2008, Nucleic acids research.

[152]  Jan Greve,et al.  Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers , 2001, Nature Structural Biology.

[153]  Koen Visscher,et al.  An objective, model-independent method for detection of non-uniform steps in noisy signals , 2008, Comput. Phys. Commun..

[154]  Gijs J. L. Wuite,et al.  Counting RAD51 proteins disassembling from nucleoprotein filaments under tension , 2008, Nature.

[155]  T. Yanagida,et al.  Mechanics of single kinesin molecules measured by optical trapping nanometry. , 1997, Biophysical journal.

[156]  Moments of excitement , 2016, Science.

[157]  Benjamin C. Jantzen,et al.  Probing protein-DNA interactions by unzipping a single DNA double helix. , 2002, Biophysical journal.

[158]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[159]  H. Noller,et al.  Direct measurement of the mechanical work during translocation by the ribosome , 2014, eLife.

[160]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[161]  I. Tinoco,et al.  Single–Base Pair Unwinding and Asynchronous RNA Release by the Hepatitis C Virus NS3 Helicase , 2011, Science.

[162]  Michelle D. Wang,et al.  Helicase promotes replication re-initiation from an RNA transcript , 2018, Nature Communications.

[163]  G. Hummer,et al.  Free energy reconstruction from nonequilibrium single-molecule pulling experiments , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[164]  Andrew J. Spakowitz,et al.  Effect of force on mononucleosomal dynamics , 2006, Proceedings of the National Academy of Sciences.

[165]  M. Rief,et al.  Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy. , 2018, Structure.

[166]  C. Bustamante,et al.  Mechanical operation and intersubunit coordination of ring-shaped molecular motors: insights from single-molecule studies. , 2014, Biophysical journal.

[167]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[168]  Michelle D. Wang,et al.  Detection of forces and displacements along the axial direction in an optical trap. , 2006, Biophysical journal.

[169]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[170]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[171]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[172]  T. Ha,et al.  Asymmetric Unwrapping of Nucleosomes under Tension Directed by DNA Local Flexibility , 2015, Cell.

[173]  Christoph F Schmidt,et al.  Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. , 2004, The journal of physical chemistry. B.

[174]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[175]  Jens Michaelis,et al.  Mechanism of Force Generation of a Viral DNA Packaging Motor , 2005, Cell.

[176]  Carlos Bustamante,et al.  ClpX(P) Generates Mechanical Force to Unfold and Translocate Its Protein Substrates , 2011, Cell.

[177]  M. Sheetz,et al.  Force of single kinesin molecules measured with optical tweezers. , 1993, Science.

[178]  Núria Forns,et al.  Single-molecule derivation of salt dependent base-pair free energies in DNA , 2010, Proceedings of the National Academy of Sciences.

[179]  D. B. McIntosh,et al.  Sequence-dependent elasticity and electrostatics of single-stranded DNA: signatures of base-stacking. , 2014, Biophysical journal.

[180]  Michelle D. Wang,et al.  Synergistic action of RNA polymerases in overcoming the nucleosomal barrier , 2010, Nature Structural &Molecular Biology.

[181]  S. Kowalczykowski,et al.  Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA , 2012, Nature.

[182]  Steven M Block,et al.  An optical apparatus for rotation and trapping. , 2010, Methods in enzymology.

[183]  S. Tans,et al.  Alternative modes of client binding enable functional plasticity of Hsp70 , 2016, Nature.

[184]  F. Ritort,et al.  The nonequilibrium thermodynamics of small systems , 2005 .

[185]  C. Bustamante,et al.  Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE , 2017, bioRxiv.

[186]  Michelle D. Wang,et al.  Single-Molecule Angular Optical Trapping for Studying Transcription Under Torsion. , 2018, Methods in molecular biology.

[187]  Joshua W. Shaevitz,et al.  Probing the kinesin reaction cycle with a 2D optical force clamp , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[188]  C. Bustamante,et al.  Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[189]  M. Bennink,et al.  Dependence of silicon position-detector bandwidth on wavelength, power, and bias. , 2006, Optics Letters.

[190]  Bryan C. Daniels,et al.  Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. , 2008, Physical review letters.

[191]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[192]  E. Schäffer,et al.  Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. , 2009, Optics express.

[193]  C. Levinthal Are there pathways for protein folding , 1968 .

[194]  Michelle D. Wang,et al.  Dynamic force spectroscopy of protein-DNA interactions by unzipping DNA. , 2003, Physical review letters.

[195]  Y. Chemla High‐resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins , 2016, Biopolymers.

[196]  Gerhard Hummer,et al.  Kinetics from nonequilibrium single-molecule pulling experiments. , 2003, Biophysical journal.

[197]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[198]  Scott Forth,et al.  Torque measurement at the single-molecule level. , 2013, Annual review of biophysics.

[199]  J. Spudich,et al.  Optical traps to study properties of molecular motors. , 2011, Cold Spring Harbor protocols.

[200]  Carlos Bustamante,et al.  High Degree of Coordination and Division of Labor among Subunits in a Homomeric Ring ATPase , 2012, Cell.

[201]  Michelle D. Wang,et al.  Direct measurements of torque during Holliday junction migration. , 2011, Biophysical journal.

[202]  S. Smith,et al.  Polymerization and mechanical properties of single RecA-DNA filaments. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[203]  N. Ribeck,et al.  Nonlinear low-force elasticity of single-stranded DNA molecules. , 2009, Physical review letters.

[204]  Michelle D. Wang,et al.  Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[205]  I. Tinoco,et al.  Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality , 2002, Science.

[206]  Fiona E Müllner,et al.  Improved hidden Markov models for molecular motors, part 2: extensions and application to experimental data. , 2010, Biophysical journal.

[207]  M. O’Donnell,et al.  Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase , 2019, Cell.

[208]  Varsha P. Desai,et al.  Co-temporal Force and Fluorescence Measurements Reveal a Ribosomal Gear Shift Mechanism of Translation Regulation by Structured mRNAs. , 2019, Molecular cell.

[209]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[210]  T. Ha,et al.  Quantitative Fluorescent Labeling of Aldehyde-Tagged Proteins for Single-Molecule Imaging , 2012, Nature Methods.

[211]  Miriam W. Allersma,et al.  Two-dimensional tracking of ncd motility by back focal plane interferometry. , 1998, Biophysical journal.

[212]  S Walter Englander,et al.  The case for defined protein folding pathways , 2017, Proceedings of the National Academy of Sciences.

[213]  Steven M. Block,et al.  Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II , 2012, Proceedings of the National Academy of Sciences.

[214]  B. Lenhard,et al.  DNA stretching induces Cas9 off-target activity , 2019, Nature Structural & Molecular Biology.

[215]  Jie Yan,et al.  Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements , 2012, Proceedings of the National Academy of Sciences.

[216]  Matthew J Lang,et al.  Interlaced optical force-fluorescence measurements for single molecule biophysics. , 2006, Biophysical journal.

[217]  Carlos Bustamante,et al.  Direct Observation of the Three-State Folding of a Single Protein Molecule , 2005, Science.

[218]  D. Haltrich,et al.  Enzymatic Oxygen Scavenging for Photostability without pH Drop in Single-Molecule Experiments , 2012, ACS nano.

[219]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[220]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[221]  N. Ribeck,et al.  Multiplexed single-molecule measurements with magnetic tweezers. , 2008, The Review of scientific instruments.

[222]  T. Odijk Stiff chains and filaments under tension , 1995 .

[223]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[224]  N. Dekker,et al.  Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles. , 2016, Nanoscale.

[225]  M. Mézard,et al.  Elasticity model of a supercoiled DNA molecule , 1997, cond-mat/9706050.

[226]  Steven M Block,et al.  Reconstructing folding energy landscapes by single-molecule force spectroscopy. , 2014, Annual review of biophysics.

[227]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[228]  Ignacio Tinoco,et al.  Temperature control methods in a laser tweezers system. , 2005, Biophysical journal.

[229]  Michelle D. Wang,et al.  Mfd Dynamically Regulates Transcription via a Release and Catch-Up Mechanism , 2018, Cell.

[230]  Christian M. Kaiser,et al.  The ribosome destabilizes native and non‐native structures in a nascent multidomain protein , 2017, Protein science : a publication of the Protein Society.

[231]  Taekjip Ha,et al.  Surfaces and orientations: much to FRET about? , 2004, Accounts of chemical research.

[232]  Liedewij Laan,et al.  Assembly dynamics of microtubules at molecular resolution , 2006, Nature.

[233]  T. Ha,et al.  Engineering of a superhelicase through conformational control , 2015, Science.

[234]  E. Nudler,et al.  A unified model of transcription elongation: what have we learned from single-molecule experiments? , 2011, Biophysical journal.

[235]  S. Tans,et al.  Reshaping of the conformational search of a protein by the chaperone trigger factor , 2013, Nature.

[236]  Robert A. Forties,et al.  DNA Y Structure: A Versatile, Multidimensional Single Molecule Assay , 2014, Nano letters.

[237]  E. Peterman,et al.  Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers. , 2006, Biophysical journal.

[238]  Paul R Selvin,et al.  In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport , 2013, Proceedings of the National Academy of Sciences.

[239]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[240]  E. Herrero-Galán,et al.  Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. , 2013, Journal of the American Chemical Society.

[241]  C. Dekker,et al.  Highly parallel magnetic tweezers by targeted DNA tethering. , 2011, Nano letters.

[242]  C. Bustamante,et al.  Molecular switch-like regulation enables global subunit coordination in a viral ring ATPase , 2018, Proceedings of the National Academy of Sciences.

[243]  I. Rouzina,et al.  Force-induced melting of the DNA double helix. 2. Effect of solution conditions. , 2001, Biophysical journal.

[244]  Wolfgang Wende,et al.  STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA , 2013, Nature Methods.

[245]  E. Peterman,et al.  Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. , 2011, Physical chemistry chemical physics : PCCP.

[246]  Ashley R. Carter,et al.  Stabilization of an Optical Microscope to 0.1 Nm in Three Dimensions , 2022 .

[247]  F. Ritort,et al.  Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems , 2017, Science.

[248]  Michelle D. Wang,et al.  Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors. , 2011, Physical review letters.

[249]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[250]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[251]  C. Bustamante,et al.  Single-Molecule Studies of Protein Folding with Optical Tweezers. , 2020, Annual review of biochemistry.

[252]  T. Ha,et al.  Ultrahigh-resolution optical trap with single-fluorophore sensitivity , 2011, Nature Methods.

[253]  J. Onuchic,et al.  Protein folding funnels: a kinetic approach to the sequence-structure relationship. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[254]  E. Peterman,et al.  Sliding sleeves of XRCC4–XLF bridge DNA and connect fragments of broken DNA , 2016, Nature.

[255]  T. Perkins,et al.  Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. , 2004, Optics letters.

[256]  High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap. , 2018, ACS nano.

[257]  S. Smith,et al.  Ionic effects on the elasticity of single DNA molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[258]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.

[259]  S. McKinney,et al.  Nonblinking and long-lasting single-molecule fluorescence imaging , 2006, Nature Methods.

[260]  M. Woodside,et al.  Direct observation of multiple misfolding pathways in a single prion protein molecule , 2012, Proceedings of the National Academy of Sciences.

[261]  Michelle D. Wang,et al.  Optical Tweezers: A Force to Be Reckoned With , 2018, Cell.

[262]  A. Buhot,et al.  Stretching of homopolymeric RNA reveals single-stranded helices and base-stacking. , 2007, Physical review letters.

[263]  Mari-Liis Visnapuu,et al.  DNA curtains for high-throughput single-molecule optical imaging. , 2010, Methods in enzymology.

[264]  Christian F. Perez,et al.  Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer , 2015, eLife.