Effective Ion Diffusion in Charged Nanoporous Materials

Multiscale models of ion transport in porous media relate microscopic material properties (e.g., pore size distribution and pore connectivity) to their macroscopic counterparts (e.g., porosity, effective diffusion coefficient and effective electrical conductivity). We derive a macroscopic model of ion transport in electrically charged nanoporous materials, and the corresponding effective diffusion coefficient, electric conductivity and transference numbers, that explicitly account for dynamic changes in electrical double layer (EDL) and possible overlap of EDLs in nanopores. The general equations comprising this model reduce to a model of an electrical double layer capacitor (EDLC) used to interpret measurements of the EDLC voltage response to charging. While the original representation relies on empirical coefficients (e.g., Bruggeman’s relation), our effective coefficients are derived from the first principles and vary with a range of electrochemical conditions (e.g., initial concentration of ions in the electrolyte). The resulting model predictions of the EDLC voltage response match the experimental data better than the original model does. © 2017 The Electrochemical Society. [DOI: 10.1149/2.0491704jes] All rights reserved.

[1]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[2]  D M Tartakovsky,et al.  Applicability regimes for macroscopic models of reactive transport in porous media. , 2011, Journal of contaminant hydrology.

[3]  Sharmila M. Mukhopadhyay,et al.  Electrochemical charge storage in hierarchical carbon manifolds , 2016 .

[4]  J.-L. Auriault,et al.  Homogenization analysis of diffusion and adsorption macrotransport in porous media: macrotransport in the absence of advection , 1993 .

[5]  M. Murad,et al.  A dual-porosity model for ionic solute transport in expansive clays , 2008 .

[6]  Siamak Farhad,et al.  Effects of structural design on the performance of electrical double layer capacitors , 2015 .

[7]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[8]  Jean-Louis Auriault,et al.  Effective Diffusion Coefficient: From Homogenization to Experiment , 1997 .

[9]  M. Murad,et al.  A three-scale model for ionic solute transport in swelling clays incorporating ion–ion correlation effects , 2015 .

[10]  Ilenia Battiato,et al.  Homogenizability conditions for multicomponent reactive transport , 2013 .

[11]  Daniel M. Tartakovsky,et al.  On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media , 2009 .

[12]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[13]  Márcio A. Murad,et al.  A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager’s Reciprocity Relations in Expansive Clays: I Homogenization Analysis , 2006 .

[14]  Jean-Louis Auriault,et al.  Heterogeneous medium. Is an equivalent macroscopic description possible , 1991 .

[15]  Márcio A. Murad,et al.  Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure , 2002 .

[16]  Martin Z. Bazant,et al.  Homogenization of the Poisson-Nernst-Planck equations for Ion Transport in Charged Porous Media , 2012, SIAM J. Appl. Math..

[17]  D. Grahame Differential Capacity of Mercury in Aqueous Sodium Fluoride Solutions. I. Effect of Concentration at 25 , 1954 .

[18]  A. Soffer,et al.  The electrical double layer of high surface porous carbon electrode , 1972 .

[19]  R. J. Hunter Foundations of Colloid Science , 1987 .

[20]  Laurent Pilon,et al.  Simulating Electric Double Layer Capacitance of Mesoporous Electrodes with Cylindrical Pores , 2011 .

[21]  Bobby Philip,et al.  A generalized multi-dimensional mathematical model for charging and discharging processes in a supercapacitor , 2014 .

[22]  Daniel M. Tartakovsky,et al.  Design of nanoporous materials with optimal sorption capacity , 2015 .

[23]  Claudia Timofte,et al.  Homogenization results for ionic transport in periodic porous media , 2014, Comput. Math. Appl..

[24]  Patrice Simon,et al.  Possible improvements in making carbon electrodes for organic supercapacitors , 1999 .

[25]  Mark W. Verbrugge,et al.  Microstructural Analysis and Mathematical Modeling of Electric Double-Layer Supercapacitors , 2005 .

[26]  S. Pyun,et al.  Theoretical approach to ion penetration into pores with pore fractal characteristics during double-layer charging/discharging on a porous carbon electrode. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[27]  S. Bike,et al.  Electrohydrodynamics of thin double layers: a model for the streaming potential profile , 1992 .

[28]  J. L. Kaschmitter,et al.  The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device , 1993 .

[29]  Sotira Yiacoumi,et al.  Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model , 2001 .

[30]  Martin Ebner,et al.  Validity of the Bruggeman relation for porous electrodes , 2013 .

[31]  U. Hornung Homogenization and porous media , 1996 .

[32]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[33]  R. Pekala,et al.  The aerocapacitor: An electrochemical double-layer energy-storage device , 1997 .

[34]  J. Auriault,et al.  Homogenization of Coupled Phenomena in Heterogenous Media , 2009 .

[35]  Steen B. Schougaard,et al.  Effective Transport Properties of Porous Electrochemical Materials — A Homogenization Approach , 2014 .

[36]  Jason R. Looker,et al.  Homogenization of the Ionic Transport Equations in Periodic Porous Media , 2006 .

[37]  P. M. Biesheuvel,et al.  Nonlinear dynamics of capacitive charging and desalination by porous electrodes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[39]  B. Kirby Micro- and nanoscale fluid mechanics : transport in microfluidic devices , 2010 .

[40]  Simona Onori,et al.  On Veracity of Macroscopic Lithium-Ion Battery Models , 2015 .

[41]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .