Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes.

In this work, we present an infrared plasmonic biosensor for chemical-specific detection and monitoring of biomimetic lipid membranes in a label-free and real-time fashion. Lipid membranes constitute the primary biological interface mediating cell signaling and interaction with drugs and pathogens. By exploiting the plasmonic field enhancement in the vicinity of engineered and surface-modified nanoantennas, the proposed biosensor is able to capture the vibrational fingerprints of lipid molecules and monitor in real time the formation kinetics of planar biomimetic membranes in aqueous environments. Furthermore, we show that this plasmonic biosensor features high-field enhancement extending over tens of nanometers away from the surface, matching the size of typical bioassays while preserving high sensitivity.

[1]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[2]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[3]  Yuji Nishikawa,et al.  Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles , 1993 .

[4]  Prashant Nagpal,et al.  Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. , 2011, ACS nano.

[5]  D. Soumpasis Theoretical analysis of fluorescence photobleaching recovery experiments. , 1983, Biophysical journal.

[6]  B. Desbat,et al.  Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy. , 1999, Biophysical Journal.

[7]  Fredrik Höök,et al.  Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. , 2007, Nano letters.

[8]  M. A. Otte,et al.  Trends and challenges of refractometric nanoplasmonic biosensors: a review. , 2014, Analytica chimica acta.

[9]  A. E. Cetin,et al.  Accessible Nearfields by Nanoantennas on Nanopedestals for Ultrasensitive Vibrational Spectroscopy , 2014 .

[10]  Fredrik Höök,et al.  Intact Vesicle Adsorption and Supported Biomembrane Formation from Vesicles in Solution: Influence of Surface Chemistry, Vesicle Size, Temperature, and Osmotic Pressure† , 2003 .

[11]  M. Engelhard,et al.  Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy , 2008, Proceedings of the National Academy of Sciences.

[12]  Sang‐Hyun Oh,et al.  Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. , 2010, Chemical science.

[13]  R. Adato,et al.  Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. , 2012, ACS nano.

[14]  Xiao Yang,et al.  Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). , 2015, Nano letters.

[15]  Ronen Adato,et al.  In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas , 2013, Nature Communications.

[16]  R. Richter,et al.  Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. , 2003, Biophysical journal.

[17]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[18]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[19]  C. Haass,et al.  Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts , 2003, The Journal of cell biology.

[20]  J. A. Lundbæk,et al.  Amphiphile regulation of ion channel function by changes in the bilayer spring constant , 2010, Proceedings of the National Academy of Sciences.

[21]  Annemarie Pucci,et al.  Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. , 2008, Physical review letters.

[22]  Petra Schwille,et al.  GM1 structure determines SV40-induced membrane invagination and infection , 2010, Nature Cell Biology.

[23]  P. Bork,et al.  A quantitative liposome microarray to systematically characterize protein-lipid interactions , 2013, Nature Methods.

[24]  P. Hildebrandt,et al.  Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes. , 2012, Angewandte Chemie.

[25]  S. Tatulian,et al.  Infrared spectroscopy of proteins and peptides in lipid bilayers , 1997, Quarterly Reviews of Biophysics.

[26]  Zhilei Zhao,et al.  Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water. , 2015, ACS applied materials & interfaces.

[27]  J. Israelachvili,et al.  Formation of supported bilayers on silica substrates. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[28]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[29]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[30]  Paul S. Cremer,et al.  Solid supported lipid bilayers: From biophysical studies to sensor design , 2006, Surface Science Reports.

[31]  E. Masliah,et al.  The many faces of α-synuclein: from structure and toxicity to therapeutic target , 2012, Nature Reviews Neuroscience.

[32]  P. Labbé,et al.  Tethered bilayer lipid membranes on mixed self-assembled monolayers of a novel anchoring thiol: impact of the anchoring thiol density on bilayer formation. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[33]  Dan V. Nicolau,et al.  Microarray technology and its applications , 2005 .

[34]  Harald Giessen,et al.  Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures , 2013, Nature Communications.

[35]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[36]  K. Salaita,et al.  Using patterned supported lipid membranes to investigate the role of receptor organization in intercellular signaling , 2011, Nature Protocols.

[37]  S. Boxer,et al.  Substrate−Membrane Interactions: Mechanisms for Imposing Patterns on a Fluid Bilayer Membrane , 1998 .

[38]  Y. Ekinci,et al.  Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. , 2012, Journal of the American Chemical Society.

[39]  Harald Giessen,et al.  Spatial extent of plasmonic enhancement of vibrational signals in the infrared. , 2014, ACS nano.

[40]  Fredrik Höök,et al.  Influence of the Evanescent Field Decay Length on the Sensitivity of Plasmonic Nanodisks and Nanoholes , 2015 .

[41]  Mark M. Rasenick,et al.  Lipid raft microdomains and neurotransmitter signalling , 2007, Nature Reviews Neuroscience.

[42]  Hyungsoon Im,et al.  Recent progress in SERS biosensing. , 2011, Physical chemistry chemical physics : PCCP.

[43]  T. Sakmar,et al.  SEIRA spectroscopy on a membrane receptor monolayer using lipoprotein particles as carriers. , 2010, Biophysical journal.

[44]  J. Heberle,et al.  Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems. , 2010, Angewandte Chemie.