The testable implications of zero-sum games

We study collective choices from the revealed preference theory viewpoint. For every product set of individual actions, joint choices are called Nash-rationalizable if there exists a preference relation for each player such that the selected joint actions are Nash equilibria of the corresponding game. We characterize Nash-rationalizable joint choice behavior by zero-sum games, or games of conflicting interests. If the joint choice behavior forms a product subset, the behavior is called interchangeable. We prove that interchangeability is the only additional empirical condition which distinguishes zero-sum games from general non-cooperative games.

[1]  Rosa L. Matzkin,et al.  Testable Restrictions on the Equilibrium Manifold , 1996 .

[2]  Peter Duersch,et al.  Unbeatable Imitation , 2010, Games Econ. Behav..

[3]  Peter Duersch,et al.  Pure strategy equilibria in symmetric two-player zero-sum games , 2011, Int. J. Game Theory.

[4]  Indrajit Ray,et al.  Game Theory via Revealed Preferences , 2001, Games Econ. Behav..

[5]  I. Ray,et al.  Observable Implications of Nash and Subgame - Perfect Behavior in Extensive Games , 2003 .

[6]  H. Raiffa,et al.  Games and Decisions: Introduction and Critical Survey. , 1958 .

[7]  S. Vajda Some topics in two-person games , 1971 .

[8]  Thomas Demuynck,et al.  The Empirical Content of Cournot Competition , 2011, J. Econ. Theory.

[9]  A. Sen,et al.  Choice Functions and Revealed Preference , 1971 .

[10]  J. Banks,et al.  Positive Political Theory I: Collective Preference , 1998 .

[11]  Yves Sprumont,et al.  On the Testable Implications of Collective Choice Theories , 2000, J. Econ. Theory.

[12]  Luc Lauwers,et al.  Nash rationalization of collective choice over lotteries , 2009, Math. Soc. Sci..

[13]  Lin Zhou,et al.  Rationalizability of choice functions by game trees , 2007, J. Econ. Theory.

[14]  Andrés Carvajal,et al.  REVEALED PREFERENCE TESTS OF THE COURNOT MODEL , 2013 .

[15]  L. Shapley SOME TOPICS IN TWO-PERSON GAMES , 1963 .

[16]  Robert Wilson The finer structure of revealed preference , 1970 .

[17]  H. Raiffa,et al.  GAMES AND DECISIONS; INTRODUCTION AND CRITICAL SURVEY. , 1958 .

[18]  Christopher P. Chambers,et al.  Testable Implications of Bargaining Theories , 2011 .

[19]  OSVRTI I PRIKAZI,et al.  Rational Choice , 2008, Encyclopedia of GIS.

[20]  Hervé Moulin,et al.  Choice functions over a finite set: A summary , 1985 .

[21]  P. Samuelson The Empirical Implications of Utility Analysis , 1938 .

[22]  Á. Galambos,et al.  The Complexity of Nash Rationalizability , 2009 .

[23]  F. Echenique,et al.  Implications of Pareto efficiency for two-agent (household) choice , 2011 .

[24]  P. Chiappori RATIONAL HOUSEHOLD LABOR SUPPLY , 1988 .

[25]  T. Radzik Saddle point theorems , 1991 .

[26]  S. Tijs,et al.  The consistency principle for games in strategic form , 1996 .

[27]  Indrajit Ray,et al.  Equilibrium behavior in markets and games: testable restrictions and identification , 2004 .

[28]  K. Suzumura Remarks on the Theory of Collective Choice , 1976 .

[29]  Françoise Forges,et al.  Afriat's Theorem for General Budget Sets , 2006, J. Econ. Theory.

[30]  C. Plott On Game Solutions and Revealed Preference Theory , 1974 .