The missing Wendland functions

AbstractThe Wendland radial basis functions (Wendland, Adv Comput Math 4:389–396, 1995) are piecewise polynomial compactly supported reproducing kernels in Hilbert spaces which are norm–equivalent to Sobolev spaces. But they only cover the Sobolev spaces 1$$\label{eqstartrep} H^{d/2+k+1/2}({\mathbf{R}}^d),\;k\in {\mathbf{N}} $$and leave out the integer order spaces in even dimensions. We derive the missing Wendland functions working for half-integer k and even dimensions, reproducing integer-order Sobolev spaces in even dimensions, but they turn out to have two additional non-polynomial terms: a logarithm and a square root. To give these functions a solid mathematical foundation, a generalized version of the “dimension walk” is applied. While the classical dimension walk proceeds in steps of two space dimensions taking single derivatives, the new one proceeds in steps of single dimensions and uses “halved” derivatives of fractional calculus.

[1]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[2]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[3]  Tilmann Gneiting,et al.  Radial Positive Definite Functions Generated by Euclid's Hat , 1999 .

[4]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[5]  R. Schaback Creating Surfaces from Scattered Data Using Radial Basis Functions , 1995 .

[6]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[7]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[8]  Elisabeth Larsson,et al.  A new class of oscillatory radial basis functions , 2006, Comput. Math. Appl..

[9]  Richard Askey Radial Characteristics Functions. , 1973 .

[10]  Mario Chica-Olmo,et al.  Geostatistics with the Matern semivariogram model: A library of computer programs for inference, kriging and simulation , 2008, Comput. Geosci..

[11]  M. Buhmann Radial functions on compact support , 1998 .

[12]  Robert Schaback,et al.  Reconstruction of Multivariate Functions from Scattered Data , 2003 .

[13]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[14]  Holger Wendland,et al.  Kernel techniques: From machine learning to meshless methods , 2006, Acta Numerica.

[15]  T. Gneiting Compactly Supported Correlation Functions , 2002 .

[16]  Robert Schaback,et al.  Operators on radial functions , 1996 .