Hierarchical contextual reasoning

VII

[1]  Jean-Marc Andreoli Focussing and proof construction , 2001, Ann. Pure Appl. Log..

[2]  J. Neumann,et al.  Die Axiomatisierung der Mengenlehre , 1928 .

[3]  Bor-Yuh Evan Chang,et al.  Human-Readable Machine-Verifiable Proofs for Teaching Constructive Logic , 2001 .

[4]  Jim Grundy,et al.  Window Inference In The HOL System , 1991, 1991., International Workshop on the HOL Theorem Proving System and Its Applications.

[5]  Christoph Kreitz,et al.  A Matrix Characterization for MELL , 1998, JELIA.

[6]  David Kaplan,et al.  On the logic of demonstratives , 1979, J. Philos. Log..

[7]  Paul Libbrecht,et al.  ActiveMath: A Generic and Adaptive Web-Based Learning Environment , 2001 .

[8]  Alan Bundy,et al.  Rippling - meta-level guidance for mathematical reasoning , 2005, Cambridge tracts in theoretical computer science.

[9]  Serge Autexier,et al.  An Abstraction for Proof Planning: The S-Abstraction , 1999 .

[10]  Christoph Walther,et al.  A Many-Sorted Calculus Based on Resolution and Paramodulation , 1982, IJCAI.

[11]  Volker Sorge,et al.  Critical Agents Supporting Interactive Theorem Proving , 1999, EPIA.

[12]  J. Urgen Stuber,et al.  Superposition Theorem Proving for Abelian Groups Represented as Integer Modules , 1996 .

[13]  Paul Graham On LISP: Advanced Techniques for Common LISP , 1993 .

[14]  Gilles Dowek,et al.  Automated Theorem Proving in First-Order Logic Modulo: On the Difference between Type Theory and Set Theory , 2023, FTP.

[15]  Dieter Hutter,et al.  Equational proof-planning by dynamic abstraction , 1997 .

[16]  de Ng Dick Bruijn Automath A Language for Mathematics , 1973 .

[17]  Dieter Hutter Management of change in structured verification , 2000, Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engineering.

[18]  A. Fraenkel Untersuchungen über die Grundlagen der Mengenlehre , 1925 .

[19]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[20]  Manfred Kerber On the representation of mathematical concepts and their translation into first-order logic , 1992 .

[21]  A. Fraenkel,et al.  Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .

[22]  George Boole,et al.  The mathematical analysis of logic , 1948 .

[23]  H. Ganzinger,et al.  Theorem proving in cancellative abelian monoids , 1996 .

[24]  Alan Bundy,et al.  The Use of Explicit Plans to Guide Inductive Proofs , 1988, CADE.

[25]  D. Hilbert,et al.  Probleme der Grundlegung der Mathematik , 1930 .

[26]  Paul Bernays,et al.  A System of Axiomatic Set Theory , 1976 .

[27]  F. Dick A survey of the project Automath , 1980 .

[28]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[29]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[30]  Dieter Hutter,et al.  Synthesis of Induction Orderings for Existence Proofs , 1994, CADE.

[31]  Fausto Giunchiglia,et al.  ABSFOL: A Proof Checker with Abstraction , 1996, CADE.

[32]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[33]  Lawrence C. Paulson,et al.  The foundation of a generic theorem prover , 1989, Journal of Automated Reasoning.

[34]  J. C. Shaw,et al.  Empirical explorations of the logic theory machine: a case study in heuristic , 1899, IRE-AIEE-ACM '57 (Western).

[35]  Peter B. Andrews,et al.  System Description: TPS: A Theorem Proving System for Type Theory , 2000, CADE.

[36]  G. Burch Of discoveries. , 1978, American heart journal.

[37]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[38]  Ingo Dahn,et al.  Integration of Automated and Interactive Theorem Proving in ILP , 1997, CADE.

[39]  Dieter Hutter,et al.  Coloring Terms to Control Equational Reasoning , 1997, Journal of Automated Reasoning.

[40]  Melvin Fitting,et al.  Tableau methods of proof for modal logics , 1972, Notre Dame J. Formal Log..

[41]  Christoph Benzmüller,et al.  Semantic Techniques for Cut-Elimination in Higher Order Logic. , 2003 .

[42]  L. E. J. Brouwer,et al.  Zur Begründung der intuitionistischen Mathematik. I. , 1925 .

[43]  Jim Grundy,et al.  A Window Inference Tool for Refinement , 1992, Refine.

[44]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[45]  Christoph Benzmüller,et al.  Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.

[46]  Dieter Hutter,et al.  VSE: formal methods meet industrial needs , 2000, International Journal on Software Tools for Technology Transfer.

[47]  John McCarthy,et al.  Notes on Formalizing Context , 1993, IJCAI.

[48]  Dieter Hutter,et al.  INKA: The Next Generation , 1996, CADE.

[49]  Reinhold Letz,et al.  Model Elimination and Connection Tableau Procedures , 2001, Handbook of Automated Reasoning.

[50]  C. Torrance Review: Kurt Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory , 1941 .

[51]  Frank Pfenning,et al.  Higher-order abstract syntax , 1988, PLDI '88.

[52]  Michael Kohlhase,et al.  MBase: Representing mathematical knowledge in a relational data base , 1999, Calculemus.

[53]  Neil V. Murray,et al.  Inference with path resolution and semantic graphs , 1987, JACM.

[54]  Dieter Hutter,et al.  The Development Graph Manager MAYA , 2002, AMAST.

[55]  Helmut Horacek Presenting Proofs in a Human-Oriented Way , 1999, CADE.

[56]  Christoph Lüth,et al.  TAS and IsaWin: Tools for Transformational Program Development and Theorem Proving , 1999, FASE.

[57]  Wayne Snyder,et al.  Basic Paramodulation and Superposition , 1992, CADE.

[58]  JEAN-MARC ANDREOLI,et al.  Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..

[59]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[60]  Dieter Hutter,et al.  System Description: inka 5.0 - A Logic Voyager , 1999, CADE.

[61]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[62]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[63]  William McCune Otter 2.0 , 1990, CADE.

[64]  Jürgen Stuber,et al.  Superposition Theorem Proving for Abelian Groups Represented as Integer Modules , 1996, Theor. Comput. Sci..

[65]  Alan Bundy,et al.  Automation of Diagrammatic Reasoning , 1997, IJCAI.

[66]  Volker Sorge,et al.  -Ants { An open approach at combining Interactive and Automated Theorem Proving , 2002 .

[67]  G. Kreisel The Collected Papers of Gerhard Gentzen , 1971 .

[68]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[69]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[70]  L. Brouwer,et al.  Intuitionism and formalism , 1913 .

[71]  Dieter Hutter,et al.  Guiding Induction Proofs , 1990, CADE.

[72]  David A. Plaisted,et al.  Theorem Proving with Abstraction , 1981, Artif. Intell..

[73]  Michael Kohlhase,et al.  OMDOC: Towards an Internet Standard for the Administration, Distribution, and Teaching of Mathematical Knowledge , 2000, AISC.

[74]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[75]  E. Beth The foundations of mathematics : a study in the philosophy of science , 1959 .

[76]  Mark Staples Window Inference in Isabelle , 2003 .

[77]  Christoph Weidenbach,et al.  SPASS: Combining Superposition, Sorts and Splitting , 2000 .

[78]  de Ng Dick Bruijn Automath : ein Projekt zur Kontrolle vom Mathematik , 1974 .

[79]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[80]  Wayne Snyder,et al.  Higher-Order Unification Revisited: Complete Sets of Transformations , 1989, J. Symb. Comput..

[81]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[82]  Greg Nelson,et al.  Fast decision algorithms based on union and find , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[83]  Frank Pfenning,et al.  A Semi-Functional Implementation of a Higher-Order Logic Programming Language , 1990 .

[84]  Dieter Hutter Annotated reasoning , 2004, Annals of Mathematics and Artificial Intelligence.

[85]  John C. Reynolds,et al.  The discoveries of continuations , 1993, LISP Symb. Comput..

[86]  David A. Wolfram,et al.  The Clausal Theory of Types , 1993 .

[87]  Volker Sorge,et al.  LΩUI: Lovely ΩMEGA User Interface , 1999, Formal Aspects of Computing.

[88]  Alan Bundy,et al.  On Automating Diagrammatic Proofs of Arithmetic Arguments , 1999, J. Log. Lang. Inf..

[89]  Allen Newell,et al.  Empirical explorations with the logic theory machine: a case study in heuristics , 1995 .

[90]  Robert S. Boyer,et al.  A computational logic handbook , 1979, Perspectives in computing.

[91]  Andrei Voronkov,et al.  Vampire 1.1 (System Description) , 2001, IJCAR.

[92]  M.N. Sastry,et al.  Structure and interpretation of computer programs , 1986, Proceedings of the IEEE.

[93]  Peter B. Andrews General Models, Descriptions, and Choice in Type Theory , 1972, J. Symb. Log..

[94]  L. E. J. Brouwer,et al.  Zur Begründung der intuitionistischen Mathematik. II , 1926 .

[95]  Volker Sorge,et al.  Proof Development with OMEGA , 2002, CADE.

[96]  Lincoln A. Wallen,et al.  Automated proof search in non-classical logics - efficient matrix proof methods for modal and intuitionistic logics , 1990, MIT Press series in artificial intelligence.

[97]  Christoph Kreitz,et al.  T-String Unification: Unifying Prefixes in Non-classical Proof Methods , 1996, TABLEAUX.

[98]  K. Gödel Die Vollständigkeit der Axiome des logischen Funktionenkalküls , 1930 .

[99]  John Staples,et al.  Formalizing a Hierarchical Structure of Practical Mathematical Reasoning , 1993, J. Log. Comput..

[100]  Erica Melis,et al.  Proof planning with multiple strategies , 2000, Artif. Intell..

[101]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[102]  Dieter Hutter,et al.  A Pragmatic Approach to Reuse in Tactical Theorem Proving , 2001, Electron. Notes Theor. Comput. Sci..

[103]  Frank van Harmelen,et al.  The Oyster-Clam System , 1990, CADE.

[104]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[105]  Norbert Eisinger,et al.  The Markgraf Karl Refutation Procedure (MKRP) , 1986, CADE.

[106]  Sunil Issar Path-Focused Duplication: A Search Procedure for General Matings , 1990, AAAI.

[107]  Volker Sorge,et al.  Integrating Computer Algebra into Proof Planning , 1998, Journal of Automated Reasoning.

[108]  Peter Norvig,et al.  Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp , 1991 .

[109]  Armin Fiedler User-adaptive proof explanation , 2001 .

[110]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[111]  Tobias Nipkow,et al.  Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[112]  Frank van Harmelen,et al.  Extensions to the Rippling-Out Tactic for Guiding Inductive Proofs , 1990, CADE.

[113]  Neil V. Murray,et al.  Path Dissolution: A Strongly Complete Rule of Inference , 1987, AAAI.

[114]  Xiaorong Huang,et al.  Human oriented proof presentation - a reconstructive approach , 1996, DISKI.

[115]  Frank Pfenning,et al.  The TPS Theorem Proving System , 1990, CADE.

[116]  Helen Lowe,et al.  XBarnacle: Making Theorem Provers More Accessible , 1997, CADE.

[117]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[118]  Dale A. Miller,et al.  Proofs in Higher-Order Logic , 1983 .

[119]  Helene Kirchner Trees in Algebra and Programming — CAAP '96 , 1996, Lecture Notes in Computer Science.

[120]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[121]  Christian Prehofer,et al.  Higher-order narrowing , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[122]  Andreas Meier System description : TRAMP transformation of machine-found proofs into natural deduction proofs at the assertion level , 2000 .

[123]  Andreas Nonnengart A resolution-based calculus for temporal logics , 1995 .