Hierarchical contextual reasoning
暂无分享,去创建一个
[1] Jean-Marc Andreoli. Focussing and proof construction , 2001, Ann. Pure Appl. Log..
[2] J. Neumann,et al. Die Axiomatisierung der Mengenlehre , 1928 .
[3] Bor-Yuh Evan Chang,et al. Human-Readable Machine-Verifiable Proofs for Teaching Constructive Logic , 2001 .
[4] Jim Grundy,et al. Window Inference In The HOL System , 1991, 1991., International Workshop on the HOL Theorem Proving System and Its Applications.
[5] Christoph Kreitz,et al. A Matrix Characterization for MELL , 1998, JELIA.
[6] David Kaplan,et al. On the logic of demonstratives , 1979, J. Philos. Log..
[7] Paul Libbrecht,et al. ActiveMath: A Generic and Adaptive Web-Based Learning Environment , 2001 .
[8] Alan Bundy,et al. Rippling - meta-level guidance for mathematical reasoning , 2005, Cambridge tracts in theoretical computer science.
[9] Serge Autexier,et al. An Abstraction for Proof Planning: The S-Abstraction , 1999 .
[10] Christoph Walther,et al. A Many-Sorted Calculus Based on Resolution and Paramodulation , 1982, IJCAI.
[11] Volker Sorge,et al. Critical Agents Supporting Interactive Theorem Proving , 1999, EPIA.
[12] J. Urgen Stuber,et al. Superposition Theorem Proving for Abelian Groups Represented as Integer Modules , 1996 .
[13] Paul Graham. On LISP: Advanced Techniques for Common LISP , 1993 .
[14] Gilles Dowek,et al. Automated Theorem Proving in First-Order Logic Modulo: On the Difference between Type Theory and Set Theory , 2023, FTP.
[15] Dieter Hutter,et al. Equational proof-planning by dynamic abstraction , 1997 .
[16] de Ng Dick Bruijn. Automath A Language for Mathematics , 1973 .
[17] Dieter Hutter. Management of change in structured verification , 2000, Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engineering.
[18] A. Fraenkel. Untersuchungen über die Grundlagen der Mengenlehre , 1925 .
[19] Tobias Nipkow,et al. Term rewriting and all that , 1998 .
[20] Manfred Kerber. On the representation of mathematical concepts and their translation into first-order logic , 1992 .
[21] A. Fraenkel,et al. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .
[22] George Boole,et al. The mathematical analysis of logic , 1948 .
[23] H. Ganzinger,et al. Theorem proving in cancellative abelian monoids , 1996 .
[24] Alan Bundy,et al. The Use of Explicit Plans to Guide Inductive Proofs , 1988, CADE.
[25] D. Hilbert,et al. Probleme der Grundlegung der Mathematik , 1930 .
[26] Paul Bernays,et al. A System of Axiomatic Set Theory , 1976 .
[27] F. Dick. A survey of the project Automath , 1980 .
[28] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[29] Peter B. Andrews. Theorem Proving via General Matings , 1981, JACM.
[30] Dieter Hutter,et al. Synthesis of Induction Orderings for Existence Proofs , 1994, CADE.
[31] Fausto Giunchiglia,et al. ABSFOL: A Proof Checker with Abstraction , 1996, CADE.
[32] Rance Cleaveland,et al. Implementing mathematics with the Nuprl proof development system , 1986 .
[33] Lawrence C. Paulson,et al. The foundation of a generic theorem prover , 1989, Journal of Automated Reasoning.
[34] J. C. Shaw,et al. Empirical explorations of the logic theory machine: a case study in heuristic , 1899, IRE-AIEE-ACM '57 (Western).
[35] Peter B. Andrews,et al. System Description: TPS: A Theorem Proving System for Type Theory , 2000, CADE.
[36] G. Burch. Of discoveries. , 1978, American heart journal.
[37] Claude Kirchner,et al. Theorem Proving Modulo , 2003, Journal of Automated Reasoning.
[38] Ingo Dahn,et al. Integration of Automated and Interactive Theorem Proving in ILP , 1997, CADE.
[39] Dieter Hutter,et al. Coloring Terms to Control Equational Reasoning , 1997, Journal of Automated Reasoning.
[40] Melvin Fitting,et al. Tableau methods of proof for modal logics , 1972, Notre Dame J. Formal Log..
[41] Christoph Benzmüller,et al. Semantic Techniques for Cut-Elimination in Higher Order Logic. , 2003 .
[42] L. E. J. Brouwer,et al. Zur Begründung der intuitionistischen Mathematik. I. , 1925 .
[43] Jim Grundy,et al. A Window Inference Tool for Refinement , 1992, Refine.
[44] Frank Pfenning,et al. System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.
[45] Christoph Benzmüller,et al. Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.
[46] Dieter Hutter,et al. VSE: formal methods meet industrial needs , 2000, International Journal on Software Tools for Technology Transfer.
[47] John McCarthy,et al. Notes on Formalizing Context , 1993, IJCAI.
[48] Dieter Hutter,et al. INKA: The Next Generation , 1996, CADE.
[49] Reinhold Letz,et al. Model Elimination and Connection Tableau Procedures , 2001, Handbook of Automated Reasoning.
[50] C. Torrance. Review: Kurt Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory , 1941 .
[51] Frank Pfenning,et al. Higher-order abstract syntax , 1988, PLDI '88.
[52] Michael Kohlhase,et al. MBase: Representing mathematical knowledge in a relational data base , 1999, Calculemus.
[53] Neil V. Murray,et al. Inference with path resolution and semantic graphs , 1987, JACM.
[54] Dieter Hutter,et al. The Development Graph Manager MAYA , 2002, AMAST.
[55] Helmut Horacek. Presenting Proofs in a Human-Oriented Way , 1999, CADE.
[56] Christoph Lüth,et al. TAS and IsaWin: Tools for Transformational Program Development and Theorem Proving , 1999, FASE.
[57] Wayne Snyder,et al. Basic Paramodulation and Superposition , 1992, CADE.
[58] JEAN-MARC ANDREOLI,et al. Logic Programming with Focusing Proofs in Linear Logic , 1992, J. Log. Comput..
[59] Max J. Cresswell,et al. A New Introduction to Modal Logic , 1998 .
[60] Dieter Hutter,et al. System Description: inka 5.0 - A Logic Voyager , 1999, CADE.
[61] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[62] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[63] William McCune. Otter 2.0 , 1990, CADE.
[64] Jürgen Stuber,et al. Superposition Theorem Proving for Abelian Groups Represented as Integer Modules , 1996, Theor. Comput. Sci..
[65] Alan Bundy,et al. Automation of Diagrammatic Reasoning , 1997, IJCAI.
[66] Volker Sorge,et al. -Ants { An open approach at combining Interactive and Automated Theorem Proving , 2002 .
[67] G. Kreisel. The Collected Papers of Gerhard Gentzen , 1971 .
[68] A. Church. An Unsolvable Problem of Elementary Number Theory , 1936 .
[69] Leon Henkin,et al. Completeness in the theory of types , 1950, Journal of Symbolic Logic.
[70] L. Brouwer,et al. Intuitionism and formalism , 1913 .
[71] Dieter Hutter,et al. Guiding Induction Proofs , 1990, CADE.
[72] David A. Plaisted,et al. Theorem Proving with Abstraction , 1981, Artif. Intell..
[73] Michael Kohlhase,et al. OMDOC: Towards an Internet Standard for the Administration, Distribution, and Teaching of Mathematical Knowledge , 2000, AISC.
[74] Franz Baader,et al. Unification theory , 1986, Decis. Support Syst..
[75] E. Beth. The foundations of mathematics : a study in the philosophy of science , 1959 .
[76] Mark Staples. Window Inference in Isabelle , 2003 .
[77] Christoph Weidenbach,et al. SPASS: Combining Superposition, Sorts and Splitting , 2000 .
[78] de Ng Dick Bruijn. Automath : ein Projekt zur Kontrolle vom Mathematik , 1974 .
[79] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[80] Wayne Snyder,et al. Higher-Order Unification Revisited: Complete Sets of Transformations , 1989, J. Symb. Comput..
[81] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[82] Greg Nelson,et al. Fast decision algorithms based on union and find , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[83] Frank Pfenning,et al. A Semi-Functional Implementation of a Higher-Order Logic Programming Language , 1990 .
[84] Dieter Hutter. Annotated reasoning , 2004, Annals of Mathematics and Artificial Intelligence.
[85] John C. Reynolds,et al. The discoveries of continuations , 1993, LISP Symb. Comput..
[86] David A. Wolfram,et al. The Clausal Theory of Types , 1993 .
[87] Volker Sorge,et al. LΩUI: Lovely ΩMEGA User Interface , 1999, Formal Aspects of Computing.
[88] Alan Bundy,et al. On Automating Diagrammatic Proofs of Arithmetic Arguments , 1999, J. Log. Lang. Inf..
[89] Allen Newell,et al. Empirical explorations with the logic theory machine: a case study in heuristics , 1995 .
[90] Robert S. Boyer,et al. A computational logic handbook , 1979, Perspectives in computing.
[91] Andrei Voronkov,et al. Vampire 1.1 (System Description) , 2001, IJCAR.
[92] M.N. Sastry,et al. Structure and interpretation of computer programs , 1986, Proceedings of the IEEE.
[93] Peter B. Andrews. General Models, Descriptions, and Choice in Type Theory , 1972, J. Symb. Log..
[94] L. E. J. Brouwer,et al. Zur Begründung der intuitionistischen Mathematik. II , 1926 .
[95] Volker Sorge,et al. Proof Development with OMEGA , 2002, CADE.
[96] Lincoln A. Wallen,et al. Automated proof search in non-classical logics - efficient matrix proof methods for modal and intuitionistic logics , 1990, MIT Press series in artificial intelligence.
[97] Christoph Kreitz,et al. T-String Unification: Unifying Prefixes in Non-classical Proof Methods , 1996, TABLEAUX.
[98] K. Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls , 1930 .
[99] John Staples,et al. Formalizing a Hierarchical Structure of Practical Mathematical Reasoning , 1993, J. Log. Comput..
[100] Erica Melis,et al. Proof planning with multiple strategies , 2000, Artif. Intell..
[101] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[102] Dieter Hutter,et al. A Pragmatic Approach to Reuse in Tactical Theorem Proving , 2001, Electron. Notes Theor. Comput. Sci..
[103] Frank van Harmelen,et al. The Oyster-Clam System , 1990, CADE.
[104] Alfred Tarski,et al. Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .
[105] Norbert Eisinger,et al. The Markgraf Karl Refutation Procedure (MKRP) , 1986, CADE.
[106] Sunil Issar. Path-Focused Duplication: A Search Procedure for General Matings , 1990, AAAI.
[107] Volker Sorge,et al. Integrating Computer Algebra into Proof Planning , 1998, Journal of Automated Reasoning.
[108] Peter Norvig,et al. Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp , 1991 .
[109] Armin Fiedler. User-adaptive proof explanation , 2001 .
[110] Furio Honsell,et al. A framework for defining logics , 1993, JACM.
[111] Tobias Nipkow,et al. Higher-order critical pairs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[112] Frank van Harmelen,et al. Extensions to the Rippling-Out Tactic for Guiding Inductive Proofs , 1990, CADE.
[113] Neil V. Murray,et al. Path Dissolution: A Strongly Complete Rule of Inference , 1987, AAAI.
[114] Xiaorong Huang,et al. Human oriented proof presentation - a reconstructive approach , 1996, DISKI.
[115] Frank Pfenning,et al. The TPS Theorem Proving System , 1990, CADE.
[116] Helen Lowe,et al. XBarnacle: Making Theorem Provers More Accessible , 1997, CADE.
[117] Michael J. C. Gordon,et al. Edinburgh LCF: A mechanised logic of computation , 1979 .
[118] Dale A. Miller,et al. Proofs in Higher-Order Logic , 1983 .
[119] Helene Kirchner. Trees in Algebra and Programming — CAAP '96 , 1996, Lecture Notes in Computer Science.
[120] Peter B. Andrews. An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.
[121] Christian Prehofer,et al. Higher-order narrowing , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.
[122] Andreas Meier. System description : TRAMP transformation of machine-found proofs into natural deduction proofs at the assertion level , 2000 .
[123] Andreas Nonnengart. A resolution-based calculus for temporal logics , 1995 .