PFH spectral invariants on the two-sphere and the large scale geometry of Hofer’s metric

We resolve three longstanding questions related to the large scale geometry of the group of Hamiltonian diffeomorphisms of the twosphere, equipped with Hofer’s metric. Namely: (1) we resolve the Kapovich-Polterovich question by showing that this group is not quasiisometric to the real line; (2) more generally, we show that the kernel of Calabi over any proper open subset is unbounded; and (3) we show that the group of area and orientation preserving homeomorphisms of the two-sphere is not a simple group. We also obtain, as a corollary, that the group of area-preserving diffeomorphisms of the open disc, equipped with an area-form of finite area, is not perfect. Central to all of our proofs are new sequences of spectral invariants over the twosphere, defined via periodic Floer homology.

[1]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[2]  Dusa McDuff,et al.  The geometry of symplectic energy , 1993 .

[3]  Eduard Zehnder,et al.  Symplectic Invariants and Hamiltonian Dynamics , 1994 .

[4]  S. M. Ulam,et al.  Measure-Preserving Homeomorphisms and Metrical Transitivity , 1941 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  E. Calabi On the Group of Automorphisms of a Symplectic Manifold , 2015 .

[7]  M. Hutchings,et al.  Gluing pseudoholomorphic curves along branched covered cylinders II , 2007, 0705.2074.

[8]  D. Mcduff On the group of volume-preserving diffeomorphisms of ⁿ , 1980 .

[9]  Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds , 2004, math/0405064.

[10]  D. Epstein,et al.  The simplicity of certain groups of homeomorphisms , 1970 .

[11]  Michael C. Sullivan,et al.  The periodic Floer homology of a Dehn twist. , 2004, math/0410059.

[12]  L. Polterovich,et al.  Function Theory on Symplectic Manifolds , 2014 .

[13]  H. Hofer On the topological properties of symplectic maps , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms , 2016, Journal of Topology and Analysis.

[15]  A. Fathi,et al.  Structure of the group of homeomorphisms preserving a good measure on a compact manifold , 1980 .

[16]  C^0-limits of Hamiltonian paths and the Oh-Schwarz spectral invariants , 2011, 1109.4123.

[17]  L. Polterovich,et al.  Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules , 2014, 1412.8277.

[18]  L. Polterovich The Geometry of the Group of Symplectic Diffeomorphism , 2001 .

[19]  Michael Usher Hofer's metrics and boundary depth , 2011, 1107.4599.

[20]  P. Harpe,et al.  Metric Geometry of Locally Compact Groups , 2014, 1403.3796.

[21]  J. Oxford,et al.  Oxford , 1968, Leaving The Arena.

[22]  P. Py,et al.  On Continuity of Quasimorphisms for Symplectic Maps , 2012 .

[23]  L. Polterovich Symplectic displacement energy for Lagrangian submanifolds , 1993, Ergodic Theory and Dynamical Systems.

[24]  Leonid Polterovich,et al.  Lagrangian configurations and Hamiltonian maps , 2021 .

[25]  M. Hutchings Lecture Notes on Embedded Contact Homology , 2013, 1303.5789.

[26]  R. Greene,et al.  Diffeomorphisms and volume-preserving embeddings of noncompact manifolds , 1979 .

[27]  L. Polterovich,et al.  Rigid subsets of symplectic manifolds , 2007, Compositio Mathematica.

[28]  권경학,et al.  4 , 1906, Undiscovered Country.

[29]  Guanheng Chen Cobordism maps on PFH induced by Lefschetz fibration over higher genus base , 2017, 1709.04270.

[30]  Augustin Banyaga,et al.  Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique , 1978 .

[31]  M. Hutchings,et al.  The Weinstein conjecture for stable Hamiltonian structures , 2008, 0809.0140.

[32]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[33]  Sobhan Seyfaddini Unboundedness of the Lagrangian Hofer distance in the Euclidean ball , 2013, 1310.1057.

[34]  Leonid Polterovich,et al.  Calabi quasimorphism and quantum homology , 2002 .

[35]  Maureen T. Carroll Geometry , 2017, MAlkahtani Mathematics.

[36]  A COMPARISON OF HOFER'S METRICS ON HAMILTONIAN DIFFEOMORPHISMS AND LAGRANGIAN SUBMANIFOLDS , 2002, math/0207070.

[37]  G. Ragsdell Systems , 2002, Economics of Visual Art.

[38]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[39]  Quasi-states and symplectic intersections , 2004, math/0410338.

[40]  Jun Zhang,et al.  Persistence modules, symplectic Banach–Mazur distance and Riemannian metrics , 2018, International Journal of Mathematics.

[41]  A. Kislev,et al.  Bounds on spectral norms and barcodes , 2018, Geometry & Topology.

[42]  M. Khanevsky,et al.  Hofer's metric on the space of diameters , 2009, 0907.1499.

[43]  C. Taubes,et al.  Periodic Floer homology and Seiberg-Witten Floer cohomology , 2009, 0906.0383.

[44]  K. Cieliebak,et al.  Compactness for punctured holomorphic curves , 2005 .

[45]  B. M. Fulk MATH , 1992 .

[46]  M. Hutchings An index inequality for embedded pseudoholomorphic curves in symplectizations , 2001, math/0112165.

[47]  Vincent Humilière,et al.  Proof of the simplicity conjecture , 2020, Annals of Mathematics.

[48]  M. Schwarz On the action spectrum for closed symplectically aspherical manifolds Pacific J , 2000 .

[49]  P. Py Quelques plats pour la métrique de Hofer , 2007, 0704.2524.

[50]  D. Mcduff Monodromy in Hamiltonian Floer theory , 2008, 0801.1328.