PFH spectral invariants on the two-sphere and the large scale geometry of Hofer’s metric
暂无分享,去创建一个
Dan Cristofaro-Gardiner | Vincent Humiliere | Sobhan Seyfaddini | Vincent Humilière | Sobhan Seyfaddini | D. Cristofaro-Gardiner | Daniel Cristofaro-Gardiner
[1] 野村栄一,et al. 2 , 1900, The Hatak Witches.
[2] Dusa McDuff,et al. The geometry of symplectic energy , 1993 .
[3] Eduard Zehnder,et al. Symplectic Invariants and Hamiltonian Dynamics , 1994 .
[4] S. M. Ulam,et al. Measure-Preserving Homeomorphisms and Metrical Transitivity , 1941 .
[5] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[6] E. Calabi. On the Group of Automorphisms of a Symplectic Manifold , 2015 .
[7] M. Hutchings,et al. Gluing pseudoholomorphic curves along branched covered cylinders II , 2007, 0705.2074.
[8] D. Mcduff. On the group of volume-preserving diffeomorphisms of ⁿ , 1980 .
[9] Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds , 2004, math/0405064.
[10] D. Epstein,et al. The simplicity of certain groups of homeomorphisms , 1970 .
[11] Michael C. Sullivan,et al. The periodic Floer homology of a Dehn twist. , 2004, math/0410059.
[12] L. Polterovich,et al. Function Theory on Symplectic Manifolds , 2014 .
[13] H. Hofer. On the topological properties of symplectic maps , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[14] Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms , 2016, Journal of Topology and Analysis.
[15] A. Fathi,et al. Structure of the group of homeomorphisms preserving a good measure on a compact manifold , 1980 .
[16] C^0-limits of Hamiltonian paths and the Oh-Schwarz spectral invariants , 2011, 1109.4123.
[17] L. Polterovich,et al. Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules , 2014, 1412.8277.
[18] L. Polterovich. The Geometry of the Group of Symplectic Diffeomorphism , 2001 .
[19] Michael Usher. Hofer's metrics and boundary depth , 2011, 1107.4599.
[20] P. Harpe,et al. Metric Geometry of Locally Compact Groups , 2014, 1403.3796.
[21] J. Oxford,et al. Oxford , 1968, Leaving The Arena.
[22] P. Py,et al. On Continuity of Quasimorphisms for Symplectic Maps , 2012 .
[23] L. Polterovich. Symplectic displacement energy for Lagrangian submanifolds , 1993, Ergodic Theory and Dynamical Systems.
[24] Leonid Polterovich,et al. Lagrangian configurations and Hamiltonian maps , 2021 .
[25] M. Hutchings. Lecture Notes on Embedded Contact Homology , 2013, 1303.5789.
[26] R. Greene,et al. Diffeomorphisms and volume-preserving embeddings of noncompact manifolds , 1979 .
[27] L. Polterovich,et al. Rigid subsets of symplectic manifolds , 2007, Compositio Mathematica.
[28] 권경학,et al. 4 , 1906, Undiscovered Country.
[29] Guanheng Chen. Cobordism maps on PFH induced by Lefschetz fibration over higher genus base , 2017, 1709.04270.
[30] Augustin Banyaga,et al. Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique , 1978 .
[31] M. Hutchings,et al. The Weinstein conjecture for stable Hamiltonian structures , 2008, 0809.0140.
[32] Remo Guidieri. Res , 1995, RES: Anthropology and Aesthetics.
[33] Sobhan Seyfaddini. Unboundedness of the Lagrangian Hofer distance in the Euclidean ball , 2013, 1310.1057.
[34] Leonid Polterovich,et al. Calabi quasimorphism and quantum homology , 2002 .
[35] Maureen T. Carroll. Geometry , 2017, MAlkahtani Mathematics.
[36] A COMPARISON OF HOFER'S METRICS ON HAMILTONIAN DIFFEOMORPHISMS AND LAGRANGIAN SUBMANIFOLDS , 2002, math/0207070.
[37] G. Ragsdell. Systems , 2002, Economics of Visual Art.
[38] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[39] Quasi-states and symplectic intersections , 2004, math/0410338.
[40] Jun Zhang,et al. Persistence modules, symplectic Banach–Mazur distance and Riemannian metrics , 2018, International Journal of Mathematics.
[41] A. Kislev,et al. Bounds on spectral norms and barcodes , 2018, Geometry & Topology.
[42] M. Khanevsky,et al. Hofer's metric on the space of diameters , 2009, 0907.1499.
[43] C. Taubes,et al. Periodic Floer homology and Seiberg-Witten Floer cohomology , 2009, 0906.0383.
[44] K. Cieliebak,et al. Compactness for punctured holomorphic curves , 2005 .
[45] B. M. Fulk. MATH , 1992 .
[46] M. Hutchings. An index inequality for embedded pseudoholomorphic curves in symplectizations , 2001, math/0112165.
[47] Vincent Humilière,et al. Proof of the simplicity conjecture , 2020, Annals of Mathematics.
[48] M. Schwarz. On the action spectrum for closed symplectically aspherical manifolds Pacific J , 2000 .
[49] P. Py. Quelques plats pour la métrique de Hofer , 2007, 0704.2524.
[50] D. Mcduff. Monodromy in Hamiltonian Floer theory , 2008, 0801.1328.