Ambit Processes; with Applications to Turbulence and Tumour Growth
暂无分享,去创建一个
[1] S. Hsu,et al. On the Volatility of Volatility , 2006, physics/0608242.
[2] Jürgen Schmiegel,et al. Self-scaling tumor growth , 2006 .
[3] O. E. Barndorff-Nielsen,et al. A class of spatio-temporal and causal stochastic processes, with application to multiscaling and multifractality , 2005, math-ph/0512044.
[4] Fred Godtliebsen,et al. EM-estimation and modeling of heavy-tailed processes with the multivariate normal inverse Gaussian distribution , 2005, Signal Process..
[5] N. Shephard,et al. Variation, Jumps, Market Frictions and High Frequency Data in Financial Econometrics , 2005 .
[6] J. Schmiegel. Self-scaling of turbulent energy dissipation correlators , 2005 .
[7] Jean Jacod,et al. A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .
[8] O. Barndorff-Nielsen,et al. A parsimonious and universal description of turbulent velocity increments , 2004 .
[9] K. Sreenivasan,et al. Intermittency exponent of the turbulent energy cascade. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] B. Pearson,et al. Stochastic energy-cascade model for (1+1)-dimensional fully developed turbulence , 2003, cond-mat/0311379.
[11] K. Sreenivasan,et al. On the effects of surrogacy of energy dissipation in determining the intermittency exponent in fully developed turbulence , 2003, cond-mat/0301458.
[12] Davar Khoshnevisan,et al. Multiparameter Processes: An Introduction to Random Fields , 2002 .
[13] Lars Forsberg. On the Normal Inverse Gaussian Distribution in Modeling Volatility in the Financial Markets , 2002 .
[14] R. Benzi,et al. Double scaling and intermittency in shear dominated flows. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] M. Yor,et al. Stochastic Volatility for Levy Processes , 2001 .
[16] M. Greiner,et al. The Markovian metamorphosis of a simple turbulent cascade model , 2000, nlin/0003044.
[17] J. M. Pastor,et al. Super-rough dynamics on tumor growth , 1998 .
[18] Martin Greiner,et al. Multiplier phenomenology in random multiplicative cascade processes. , 1998, chao-dyn/9805008.
[19] Luigi Accardi,et al. Probability Towards 2000 , 1998 .
[20] Ole E. Barndorff-Nielsen,et al. Processes of normal inverse Gaussian type , 1997, Finance Stochastics.
[21] Witold Elsner,et al. On the measurement of turbulence energy dissipation , 1996 .
[22] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov , 1996 .
[23] R. Antonia,et al. Refined similarity hypotheses for turbulent velocity and temperature fields , 1995 .
[24] I. Hosokawa,et al. Experimental study of the Kolmogorov refined similarity variable , 1994 .
[25] Succi,et al. Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[26] G. Stolovitzky,et al. Kolmogorov's refined similarity hypotheses. , 1992, Physical review letters.
[27] A. Vincent,et al. The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.
[28] C. Meneveau,et al. The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.
[29] Y. Gagne,et al. Velocity probability density functions of high Reynolds number turbulence , 1990 .
[30] B. Rajput,et al. Spectral representations of infinitely divisible processes , 1989 .
[31] E. Giné,et al. On Quadratic Variation of Processes with Gaussian Increments , 1975 .
[32] John B. Walsh,et al. Stochastic integrals in the plane , 1975 .
[33] Moshe Zakai,et al. Martingales and stochastic integrals for processes with a multi-dimensional parameter , 1974 .
[34] A. Obukhov. Some specific features of atmospheric turbulence , 1962 .
[35] A. Kolmogorov. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.
[36] A. M. Oboukhov. Some specific features of atmospheric tubulence , 1962, Journal of Fluid Mechanics.
[37] A. Kolmogorov. Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[38] O. Morgenthaler,et al. Proceedings of the Conference , 1930 .
[39] Eva B. Vedel Jensen,et al. Spatio-Temporal Modelling — with a View to Biological Growth , 2007 .
[40] C. Lindberg. Portfolio Optimization and Statistics in Stochastic Volatility Markets , 2005 .
[41] R. Schilling. Financial Modelling with Jump Processes , 2005 .
[42] O. Barndorff-Nielsen,et al. Lévy-based Tempo-Spatial Modelling; with Applications to Turbulence , 2003 .
[43] S. Grossmann. The Spectrum of Turbulence , 2003 .
[44] E. Eberlein,et al. The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures , 2002 .
[45] S. R. Pliska,et al. Mathematical Finance, Bachelier Congres 2000 , 2002 .
[46] N. Shephard,et al. Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .
[47] J. Stoyanov. Essentials of stochastic finance, by Albert N. Shiryaev , 2000 .
[48] K. Prause. The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .
[49] M. Greinera,et al. Fix-point multiplier distributions in discrete turbulent cascade models , 1999 .
[50] O. Barndorff-Nielsen. Probability and Statistics: Self-Decomposability, Finance and Turbulence , 1998 .
[51] R. A. Antonia,et al. THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .
[52] G. Stolovitzky,et al. Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes , 1994 .
[53] John B. Walsh,et al. Martingales with a multidimensional parameter and stochastic integrals in the plane , 1986 .
[54] J. B. Walsh,et al. An introduction to stochastic partial differential equations , 1986 .
[55] École d'été de probabilités de Saint-Flour,et al. École d'été de probabilités de Saint Flour XIV, 1984 , 1986 .