(S)TEM-EELS as advanced characterization technique for lithium-ion battery

[1]  Xingxu Yan,et al.  Single-defect phonons imaged by electron microscopy , 2021, Nature.

[2]  K. Amine,et al.  Full Concentration Gradient‐Tailored Li‐Rich Layered Oxides for High‐Energy Lithium‐Ion Batteries , 2020, Advanced materials.

[3]  F. Pan,et al.  Enhanced long-term cyclability in Li-Rich layered oxides by electrochemically constructing a LixTM3-xO4-type spinel shell , 2020 .

[4]  R. Ishikawa,et al.  Dislocation and oxygen-release driven delithiation in Li2MnO3 , 2020, Nature Communications.

[5]  Yijin Liu,et al.  Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides , 2020, Nature Communications.

[6]  Tongchao Liu,et al.  A disordered rock salt anode for fast-charging lithium-ion batteries , 2020, Nature.

[7]  Weifeng Wei,et al.  Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode , 2020 .

[8]  Chaodi Xu,et al.  Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries , 2020, Nature Materials.

[9]  Tongchao Liu,et al.  Structural distortion induced by manganese activation in lithium-rich layered cathode. , 2020, Journal of the American Chemical Society.

[10]  Wangda Li,et al.  High‐Nickel NMA: A Cobalt‐Free Alternative to NMC and NCA Cathodes for Lithium‐Ion Batteries , 2020, Advanced materials.

[11]  Ji‐Guang Zhang,et al.  Current Density Regulated Atomic to Nanoscale Process on Li Deposition and Solid Electrolyte Interphase Revealed by Cryogenic Transmission Electron Microscopy. , 2020, ACS nano.

[12]  T. Brezesinski,et al.  Enhancing the electrochemical performance of LiNi0.70Co0.15Mn0.15O2 cathodes using a practical solution-based Al2O3 coating. , 2020, ACS applied materials & interfaces.

[13]  Kazuo Yamamoto,et al.  Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding , 2020, Nature Communications.

[14]  Qian Sun,et al.  Size-Mediated Recurring Spinel Sub-nanodomains in Li and Mn-rich Layered Cathode Materials. , 2020, Angewandte Chemie.

[15]  Yanbin Shen,et al.  Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture , 2020 .

[16]  G. Ceder,et al.  Kinetic pathways of ionic transport in fast-charging lithium titanate , 2020, Science.

[17]  Evan M. Erickson,et al.  High-nickel layered oxide cathodes for lithium-based automotive batteries , 2020 .

[18]  Zhiping Luo,et al.  A novel reversible fluorescent probe for the highly sensitive detection of nitro and peroxide organic explosives using electrospun BaWO4 nanofibers , 2019, Journal of Materials Chemistry C.

[19]  Dongchu Chen,et al.  Synthesis of Ni@NiSn Composite with High Lithium‐Ion Diffusion Coefficient for Fast‐Charging Lithium‐Ion Batteries , 2019, Global challenges.

[20]  Tongchao Liu,et al.  Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery , 2019, Nature Communications.

[21]  Qian Sun,et al.  Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries , 2019, ACS Energy Letters.

[22]  Xiao‐Qing Yang,et al.  Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research , 2019, Advanced materials.

[23]  Allen Pei,et al.  Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density , 2019, Joule.

[24]  Doron Aurbach,et al.  Structural and Electrochemical Aspects of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Doped by Various Cations , 2019, ACS Energy Letters.

[25]  Haixia Li,et al.  Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries† †Electronic supplementary information (ESI) available: Experimental section, additional figures, tables as mentioned in the text. See DOI: 10.1039/c8sc03385d , 2018, Chemical science.

[26]  A. Kuwabara,et al.  Systematic analysis of electron energy-loss near-edge structures in Li-ion battery materials. , 2018, Physical chemistry chemical physics : PCCP.

[27]  Ji‐Guang Zhang,et al.  Revealing Cycling Rate-Dependent Structure Evolution in Ni-Rich Layered Cathode Materials , 2018, ACS Energy Letters.

[28]  Xuanxuan Bi,et al.  Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release , 2018, Nature Energy.

[29]  Long-qing Chen,et al.  Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy , 2018, Nature Communications.

[30]  Jun Lu,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[31]  V. Dravid,et al.  Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy , 2018, Microscopy and Microanalysis.

[32]  Alok M. Tripathi,et al.  In situ analytical techniques for battery interface analysis. , 2018, Chemical Society reviews.

[33]  Xiqian Yu,et al.  Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating. , 2018, Accounts of chemical research.

[34]  Kei Saito,et al.  Electron energy loss spectroscopy for polymers: a review , 2017 .

[35]  S. Pennycook,et al.  Applications of STEM-EELS to complex oxides , 2017 .

[36]  O. Stéphan,et al.  Atomically resolved mapping of EELS fine structures , 2017 .

[37]  Tongchao Liu,et al.  Tuning of Thermal Stability in Layered Li(NixMnyCoz)O2. , 2016, Journal of the American Chemical Society.

[38]  Guoying Chen,et al.  Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides , 2015, Nature Communications.

[39]  H. Sakaebe,et al.  Lithium analysis using reflection EELS for lithium compounds , 2015 .

[40]  K. Kimoto,et al.  Chemical States of Overcharged LiCoO2 Particle Surfaces and Interiors Observed Using Electron Energy-Loss Spectroscopy , 2015 .

[41]  Danna Qian,et al.  Advanced analytical electron microscopy for lithium-ion batteries , 2015 .

[42]  Isaac M. Markus,et al.  Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries , 2014 .

[43]  Xiqian Yu,et al.  Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials , 2013 .

[44]  M. Moreno,et al.  Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. , 2011, ACS nano.

[45]  M. Malac,et al.  EELS in the TEM , 2005 .

[46]  M. Diociaiuti Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications , 2005 .

[47]  Y. Koyama,et al.  Electronic structure of lithium nickel oxides by electron energy loss spectroscopy. , 2005, The journal of physical chemistry. B.

[48]  B. Fultz,et al.  White lines and d-band occupancy for the 3d transition-metal oxides and lithium transition-metal oxides , 2004 .

[49]  O. L. Krivanek,et al.  Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.

[50]  J. Bruley,et al.  Electron energy‐loss near‐edge structure – a tool for the investigation of electronic structure on the nanometre scale , 2001, Journal of microscopy.

[51]  Colliex,et al.  Electron-energy-loss core-edge structures in manganese oxides. , 1993, Physical review. B, Condensed matter.

[52]  Xiqian Yu,et al.  Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged Li x Ni 0.8 Co 0.15 Al 0.05 O 2 Cathode , 2013 .

[53]  R. Egerton Electron energy-loss spectroscopy in the TEM , 2008 .

[54]  P. Batson,et al.  Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity , 1993, Nature.