Chaotic Behavior of Cellular Automata
暂无分享,去创建一个
[1] G. A. Edgar. Measure, Topology, and Fractal Geometry , 1990 .
[2] Giovanni Manzini,et al. On computing the entropy of cellular automata , 2003, Theor. Comput. Sci..
[3] T. K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata , 2005 .
[4] Heinz-Otto Peitgen,et al. Global analysis of self-similarity features of cellular automata: selected examples , 1995 .
[5] Pietro Di Lena. Decidable Properties for Regular Cellular Automata , 2006, IFIP TCS.
[6] Jarkko Kari. Rice's Theorem for the Limit Sets of Cellular Automata , 1994, Theor. Comput. Sci..
[7] Stephen J. Willson. Computing fractal dimensions for additive cellular automata , 1987 .
[8] Pierre Tisseur,et al. Some properties of cellular automata with equicontinuity points , 2000 .
[9] P. Kurka. Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.
[10] Enrico Formenti,et al. Number conserving cellular automata II: dynamics , 2003, Theor. Comput. Sci..
[11] Gianpiero Cattaneo,et al. A Shift-Invariant Metric on Szz Inducing a Non-trivial Tolology , 1997, MFCS.
[12] W. A. Coppel,et al. Dynamics in One Dimension , 1992 .
[13] S. Kolyada,et al. LI-Yorke sensitivity and other concepts of chaos , 2004 .
[14] M. Shereshevsky,et al. Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms , 1993 .
[15] Alejandro Maass,et al. Expansive invertible onesided cellular automata , 2000 .
[16] Ethan Akin,et al. Li-Yorke sensitivity , 2003 .
[17] Michel Vellekoop,et al. On Intervals, Transitivity = Chaos , 1994 .
[18] Luigi Acerbi,et al. Shifting and Lifting of Cellular Automata , 2007 .
[19] J. Guckenheimer. Sensitive dependence to initial conditions for one dimensional maps , 1979 .
[20] Gianpiero Cattaneo,et al. Solution of some conjectures about topological properties of linear cellular automata , 2004, Theor. Comput. Sci..
[21] Klaus Sutner,et al. Linear Cellular Automata and de Bruijn Automata , 1999 .
[22] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[23] François Blanchard,et al. Dynamical properties of expansive one-sided cellular automata , 1997 .
[24] Carsten Knudsen,et al. Chaos Without Nonperiodicity , 1994 .
[25] Y. Pesin,et al. Dimension theory in dynamical systems , 1997 .
[26] Boris Hasselblatt,et al. Introduction to the Modern Theory of Dynamical Systems: PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS , 1995 .
[27] Satoshi Takahashi,et al. Self-Similarity of Linear Cellular Automata , 1992, J. Comput. Syst. Sci..
[28] Stephen J. Willson. The equality of fractional dimensions for certain cellular automata , 1987 .
[29] Heinz-Otto Peitgen,et al. Fractal Geometry and Computer Graphics , 1992 .
[30] Nobuyasu Osato,et al. Linear Cellular Automata over Z_m , 1983, J. Comput. Syst. Sci..
[31] Ethan Akin,et al. The general topology of dynamical systems , 1993 .
[32] B. Weiss,et al. Sensitive dependence on initial conditions , 1993 .
[33] Enrico Formenti,et al. On the sensitivity of additive cellular automata in Besicovitch topologies , 2003, Theor. Comput. Sci..
[34] Benjamin Weiss,et al. Topological transitivity and ergodic measures , 1971, Mathematical systems theory.
[35] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[36] Luciano Margara. On Some Topological Properties of Linear Cellular Automata , 1999, MFCS.
[37] Petr Kurka,et al. Cellular Automata in the Cantor, Besicovitch, and Weyl Topological Spaces , 1997, Complex Syst..
[38] J. Banks,et al. On Devaney's definition of chaos , 1992 .
[39] Thomas Ward,et al. Entropy bounds for endomorphisms commuting withK actions , 1998 .
[40] Jarkko Kari,et al. Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..
[41] K. Culík,et al. The topological entropy of cellular automata is uncomputable , 1992, Ergodic Theory and Dynamical Systems.
[42] Gianpiero Cattaneo,et al. Ergodicity, transitivity, and regularity for linear cellular automata over Zm , 2000, Theor. Comput. Sci..
[43] Stephen J. Willson,et al. Growth rates and fractional dimensions in cellular automata , 1984 .
[44] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[45] Gianpiero Cattaneo,et al. Investigating topological chaos by elementary cellular automata dynamics , 2000, Theor. Comput. Sci..
[46] Mike Boyle,et al. Periodic points for onto cellular automata , 1999 .
[47] Harry Furstenberg,et al. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.
[48] Enrico Formenti,et al. On undecidability of equicontinuity classification for cellular automata , 2003, DMCS.
[49] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[50] K. Sigmund,et al. Ergodic Theory on Compact Spaces , 1976 .
[51] Peter March,et al. Convergence in ergodic theory and probability , 1996 .
[52] Serafino Amoroso,et al. Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..
[53] Petr Kurka,et al. Topological and measure-theoretic properties of one-dimensional cellular automata , 1997 .
[54] Enrico Formenti,et al. Some results about the chaotic behavior of cellular automata , 2005, Theor. Comput. Sci..
[55] P. Walters. Introduction to Ergodic Theory , 1977 .
[57] Masakazu Nasu,et al. Textile systems for endomorphisms and automorphisms of the shift , 1995 .
[58] Y. Pesin. DIMENSION THEORY IN DYNAMICAL SYSTEMS: CONTEMPORARY VIEWS AND APPLICATIONS By YAKOV B. PESIN Chicago Lectures in Mathematics, University of Chicago Press, 312 pp. Price: hardback $56, paperback $19.95. ISBN 0 226 66222 5 , 1998, Ergodic Theory and Dynamical Systems.
[59] James A. Yorke,et al. INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS , 1980 .
[60] B. Kitchens. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .
[61] Stephen Wolfram,et al. Theory and Applications of Cellular Automata , 1986 .
[62] François Blanchard,et al. On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).
[63] Gianpiero Cattaneo,et al. Chaotic Subshifts and Related Languages Applications to one-dimensional Cellular Automata , 2002, Fundam. Informaticae.
[64] Giovanni Manzini,et al. A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1999, Theor. Comput. Sci..
[65] Mike Hurley. Ergodic aspects of cellular automata , 1990 .