Chaotic Behavior of Cellular Automata

[1]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[2]  Giovanni Manzini,et al.  On computing the entropy of cellular automata , 2003, Theor. Comput. Sci..

[3]  T. K. Subrahmonian Moothathu Homogeneity of surjective cellular automata , 2005 .

[4]  Heinz-Otto Peitgen,et al.  Global analysis of self-similarity features of cellular automata: selected examples , 1995 .

[5]  Pietro Di Lena Decidable Properties for Regular Cellular Automata , 2006, IFIP TCS.

[6]  Jarkko Kari Rice's Theorem for the Limit Sets of Cellular Automata , 1994, Theor. Comput. Sci..

[7]  Stephen J. Willson Computing fractal dimensions for additive cellular automata , 1987 .

[8]  Pierre Tisseur,et al.  Some properties of cellular automata with equicontinuity points , 2000 .

[9]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[10]  Enrico Formenti,et al.  Number conserving cellular automata II: dynamics , 2003, Theor. Comput. Sci..

[11]  Gianpiero Cattaneo,et al.  A Shift-Invariant Metric on Szz Inducing a Non-trivial Tolology , 1997, MFCS.

[12]  W. A. Coppel,et al.  Dynamics in One Dimension , 1992 .

[13]  S. Kolyada,et al.  LI-Yorke sensitivity and other concepts of chaos , 2004 .

[14]  M. Shereshevsky,et al.  Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms , 1993 .

[15]  Alejandro Maass,et al.  Expansive invertible onesided cellular automata , 2000 .

[16]  Ethan Akin,et al.  Li-Yorke sensitivity , 2003 .

[17]  Michel Vellekoop,et al.  On Intervals, Transitivity = Chaos , 1994 .

[18]  Luigi Acerbi,et al.  Shifting and Lifting of Cellular Automata , 2007 .

[19]  J. Guckenheimer Sensitive dependence to initial conditions for one dimensional maps , 1979 .

[20]  Gianpiero Cattaneo,et al.  Solution of some conjectures about topological properties of linear cellular automata , 2004, Theor. Comput. Sci..

[21]  Klaus Sutner,et al.  Linear Cellular Automata and de Bruijn Automata , 1999 .

[22]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[23]  François Blanchard,et al.  Dynamical properties of expansive one-sided cellular automata , 1997 .

[24]  Carsten Knudsen,et al.  Chaos Without Nonperiodicity , 1994 .

[25]  Y. Pesin,et al.  Dimension theory in dynamical systems , 1997 .

[26]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: PRINCIPAL CLASSES OF ASYMPTOTIC TOPOLOGICAL INVARIANTS , 1995 .

[27]  Satoshi Takahashi,et al.  Self-Similarity of Linear Cellular Automata , 1992, J. Comput. Syst. Sci..

[28]  Stephen J. Willson The equality of fractional dimensions for certain cellular automata , 1987 .

[29]  Heinz-Otto Peitgen,et al.  Fractal Geometry and Computer Graphics , 1992 .

[30]  Nobuyasu Osato,et al.  Linear Cellular Automata over Z_m , 1983, J. Comput. Syst. Sci..

[31]  Ethan Akin,et al.  The general topology of dynamical systems , 1993 .

[32]  B. Weiss,et al.  Sensitive dependence on initial conditions , 1993 .

[33]  Enrico Formenti,et al.  On the sensitivity of additive cellular automata in Besicovitch topologies , 2003, Theor. Comput. Sci..

[34]  Benjamin Weiss,et al.  Topological transitivity and ergodic measures , 1971, Mathematical systems theory.

[35]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[36]  Luciano Margara On Some Topological Properties of Linear Cellular Automata , 1999, MFCS.

[37]  Petr Kurka,et al.  Cellular Automata in the Cantor, Besicovitch, and Weyl Topological Spaces , 1997, Complex Syst..

[38]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[39]  Thomas Ward,et al.  Entropy bounds for endomorphisms commuting withK actions , 1998 .

[40]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[41]  K. Culík,et al.  The topological entropy of cellular automata is uncomputable , 1992, Ergodic Theory and Dynamical Systems.

[42]  Gianpiero Cattaneo,et al.  Ergodicity, transitivity, and regularity for linear cellular automata over Zm , 2000, Theor. Comput. Sci..

[43]  Stephen J. Willson,et al.  Growth rates and fractional dimensions in cellular automata , 1984 .

[44]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[45]  Gianpiero Cattaneo,et al.  Investigating topological chaos by elementary cellular automata dynamics , 2000, Theor. Comput. Sci..

[46]  Mike Boyle,et al.  Periodic points for onto cellular automata , 1999 .

[47]  Harry Furstenberg,et al.  Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.

[48]  Enrico Formenti,et al.  On undecidability of equicontinuity classification for cellular automata , 2003, DMCS.

[49]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[50]  K. Sigmund,et al.  Ergodic Theory on Compact Spaces , 1976 .

[51]  Peter March,et al.  Convergence in ergodic theory and probability , 1996 .

[52]  Serafino Amoroso,et al.  Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..

[53]  Petr Kurka,et al.  Topological and measure-theoretic properties of one-dimensional cellular automata , 1997 .

[54]  Enrico Formenti,et al.  Some results about the chaotic behavior of cellular automata , 2005, Theor. Comput. Sci..

[55]  P. Walters Introduction to Ergodic Theory , 1977 .

[57]  Masakazu Nasu,et al.  Textile systems for endomorphisms and automorphisms of the shift , 1995 .

[58]  Y. Pesin DIMENSION THEORY IN DYNAMICAL SYSTEMS: CONTEMPORARY VIEWS AND APPLICATIONS By YAKOV B. PESIN Chicago Lectures in Mathematics, University of Chicago Press, 312 pp. Price: hardback $56, paperback $19.95. ISBN 0 226 66222 5 , 1998, Ergodic Theory and Dynamical Systems.

[59]  James A. Yorke,et al.  INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS , 1980 .

[60]  B. Kitchens Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .

[61]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[62]  François Blanchard,et al.  On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).

[63]  Gianpiero Cattaneo,et al.  Chaotic Subshifts and Related Languages Applications to one-dimensional Cellular Automata , 2002, Fundam. Informaticae.

[64]  Giovanni Manzini,et al.  A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1999, Theor. Comput. Sci..

[65]  Mike Hurley Ergodic aspects of cellular automata , 1990 .