High-mobility Carbon-nanotube Thin-film Transistors on a Polymeric Substrate

We report the development of high-mobility carbon-nanotube thin-film transistors fabricated on a polymeric substrate. The active semiconducting channel in the devices is composed of a random two-dimensional network of single-walled carbon nanotubes (SWNTs). The devices exhibit a field-effect mobility of 150cm2∕Vs and a normalized transconductance of 0.5mS∕mm. The ratio of on-current (Ion) to off-current (Ioff) is ∼100 and is limited by metallic SWNTs in the network. With electronic purification of the SWNTs and improved gate capacitance we project that the transconductance can be increased to ∼10–100mS∕mm with a significantly higher value of Ion∕Ioff, thus approaching crystalline semiconductor-like performance on polymeric substrates.

[1]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[2]  Lei An,et al.  A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. , 2004, Journal of the American Chemical Society.

[3]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[4]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[5]  Eric S. Snow,et al.  Random networks of carbon nanotubes as an electronic material , 2003 .

[6]  Fotios Papadimitrakopoulos,et al.  A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. , 2003, Journal of the American Chemical Society.

[7]  Edgar Muñoz,et al.  Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. , 2004, Journal of the American Chemical Society.

[8]  Ya‐Ping Sun,et al.  Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[9]  Mao-Hua Du,et al.  Bulk Separative Enrichment in Metallic or Semiconducting Single-Walled Carbon Nanotubes , 2003 .

[10]  K. Balasubramanian,et al.  A Selective Electrochemical Approach to Carbon Nanotube Field-Effect Transistors , 2004 .

[11]  E. Snow,et al.  Macroelectronic applications of carbon nanotube networks , 2004 .

[12]  Jean-Christophe P. Gabriel,et al.  Flexible Nanotube Electronics , 2003 .

[13]  Keun Soo Kim,et al.  Modification of Electronic Structures of a Carbon Nanotube by Hydrogen Functionalization , 2002 .

[14]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[15]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[16]  Hongkun Park,et al.  Shell filling and exchange coupling in metallic single-walled carbon nanotubes. , 2002, Physical review letters.

[17]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[18]  Robert A. Street,et al.  Technology and Applications of Amorphous Silicon , 2000 .

[19]  Qiang Fu,et al.  Polymer Electrolyte-Gated Carbon Nanotube Field-Effect Transistor , 2004 .

[20]  J. Ramdani,et al.  High-performance carbon nanotube transistors on SrTiO3/Si substrates , 2004 .

[21]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[22]  Supriyo Datta,et al.  Metal–insulator–semiconductor electrostatics of carbon nanotubes , 2002 .

[23]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[24]  Zhen Yu,et al.  Carbon nanotube transistor operation at 2.6 Ghz , 2004 .

[25]  E. Snow,et al.  Carbon nanotube networks: Nanomaterial for macroelectronic applications , 2004 .

[26]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[27]  David J. Frank,et al.  Frequency dependent characterization of transport properties in carbon nanotube transistors , 2004 .

[28]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .