NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance

[1]  Y. Akao,et al.  Anti-cancer fatty-acid derivative induces autophagic cell death through modulation of PKM isoform expression profile mediated by bcr-abl in chronic myeloid leukemia. , 2015, Cancer letters.

[2]  B. Chernyak,et al.  Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium , 2014, Aging.

[3]  Y. Xiong,et al.  Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. , 2013, Molecular cell.

[4]  Jie Li,et al.  PKM2 Isoform-Specific Deletion Reveals a Differential Requirement for Pyruvate Kinase in Tumor Cells , 2013, Cell.

[5]  A. Eid,et al.  Nox4 NADPH Oxidase Mediates Peroxynitrite-dependent Uncoupling of Endothelial Nitric-oxide Synthase and Fibronectin Expression in Response to Angiotensin II , 2013, The Journal of Biological Chemistry.

[6]  M. Zimmerman,et al.  Mitochondria in Cardiovascular Physiology and Disease Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons , 2013 .

[7]  C. Redon,et al.  NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy. , 2013, Anti-cancer agents in medicinal chemistry.

[8]  Shichun Zheng,et al.  Pyruvate Kinase M2 Expression, but Not Pyruvate Kinase Activity, Is Up-Regulated in a Grade-Specific Manner in Human Glioma , 2013, PloS one.

[9]  W. Friedrichs,et al.  Stabilization of HIF-2alpha through redox regulation of mTORC2 activation and initiation of mRNA translation , 2012, Oncogene.

[10]  Pierluigi Gambetti,et al.  Physiology and pathophysiology , 2013 .

[11]  K. Aldape,et al.  ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect , 2012, Nature Cell Biology.

[12]  H. Lehrach,et al.  Pyruvate kinase is a dosage-dependent regulator of cellular amino acid homeostasis , 2012, Oncotarget.

[13]  Eyal Gottlieb,et al.  Serine is a natural ligand and allosteric activator of pyruvate kinase M2 , 2012, Nature.

[14]  K. Block,et al.  Aiding and abetting roles of NOX oxidases in cellular transformation , 2012, Nature Reviews Cancer.

[15]  E. Gottlieb,et al.  Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. , 2012, Trends in biochemical sciences.

[16]  Y. Kim,et al.  Angiotensin II-Induced Mitochondrial Nox4 Is a Major Endogenous Source of Oxidative Stress in Kidney Tubular Cells , 2012, PloS one.

[17]  W. Friedrichs,et al.  Nox4 Mediates Renal Cell Carcinoma Cell Invasion through Hypoxia-Induced Interleukin 6- and 8- Production , 2012, PloS one.

[18]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[19]  J. Maranchie,et al.  Nox4 inhibition enhances the cytotoxicity of cisplatin in human renal cancer cells. , 2012, Journal of experimental therapeutics & oncology.

[20]  Jason W. Locasale,et al.  Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses , 2011, Science.

[21]  K. Shimada,et al.  ROS generation via NOX4 and its utility in the cytological diagnosis of urothelial carcinoma of the urinary bladder , 2011, BMC urology.

[22]  Zhengyu Zha,et al.  Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. , 2011, Molecular cell.

[23]  F. Carvalho,et al.  A Rapid and Simple Procedure for the Establishment of Human Normal and Cancer Renal Primary Cell Cultures from Surgical Specimens , 2011, PloS one.

[24]  A. Shah,et al.  The E-loop Is Involved in Hydrogen Peroxide Formation by the NADPH Oxidase Nox4* , 2011, The Journal of Biological Chemistry.

[25]  Jason W. Locasale,et al.  Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells , 2010, Science.

[26]  Michael D. Schneider,et al.  NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart , 2010, Proceedings of the National Academy of Sciences.

[27]  Keshav K. Singh,et al.  NADPH oxidase 4 is an oncoprotein localized to mitochondria , 2010, Cancer biology & therapy.

[28]  D. Parekh,et al.  Tumorigenesis and Neoplastic Progression The NADPH Oxidase Subunit p22 phox Inhibits the Function of the Tumor Suppressor Protein Tuberin , 2022 .

[29]  A. Means,et al.  Faculty Opinions recommendation of Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. , 2010 .

[30]  Hongli,et al.  Upregulation of Nox4 by Hypertrophic Stimuli Promotes Apoptosis and Mitochondrial Dysfunction in Cardiac Myocytes , 2010 .

[31]  M. Assanah,et al.  HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer , 2010, Nature.

[32]  A. Krainer,et al.  The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism , 2010, Proceedings of the National Academy of Sciences.

[33]  V Clower Cynthia,et al.  選択的スプライシングレプレッサーhnRNP A1/A2とPTBはピルビン酸キナーゼアイソフォーム発現と細胞代謝に影響する , 2010 .

[34]  Jing Chen,et al.  Tyrosine Phosphorylation Inhibits PKM2 to Promote the Warburg Effect and Tumor Growth , 2009, Science Signaling.

[35]  H. Abboud,et al.  Subcellular localization of Nox4 and regulation in diabetes , 2009, Proceedings of the National Academy of Sciences.

[36]  T. Kamata Roles of Nox1 and other Nox isoforms in cancer development , 2009, Cancer science.

[37]  Peng Huang,et al.  Redox regulation of cell survival. , 2008, Antioxidants & redox signaling.

[38]  J. Keaney,et al.  Regulation of ROS signal transduction by NADPH oxidase 4 localization , 2008, The Journal of cell biology.

[39]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[40]  John L Cleveland,et al.  Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. , 2008, The Journal of clinical investigation.

[41]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[42]  H. Abboud,et al.  Mitogenic signaling via platelet-derived growth factor beta in metanephric mesenchymal cells. , 2007, Journal of the American Society of Nephrology : JASN.

[43]  Paul J. Williams,et al.  NAD(P)H Oxidases Regulate HIF-2α Protein Expression* , 2007, Journal of Biological Chemistry.

[44]  T. Yoneda,et al.  NAD(P)H oxidases regulate HIF-2alpha protein expression. , 2007, The Journal of biological chemistry.

[45]  K. Krause,et al.  The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. , 2007, Physiological reviews.

[46]  G. Collins The next generation. , 2006, Scientific American.

[47]  K. Nakagawa,et al.  The superoxide‐producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[48]  J. Maranchie,et al.  Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. , 2005, Cancer research.

[49]  P. Hordijk,et al.  Expression and localization of NOX2 and NOX4 in primary human endothelial cells. , 2005, Antioxidants & redox signaling.

[50]  S. Pandol,et al.  Reactive Oxygen Species Produced by NAD(P)H Oxidase Inhibit Apoptosis in Pancreatic Cancer Cells* , 2004, Journal of Biological Chemistry.

[51]  U. Brinck,et al.  L- and M2- pyruvate kinase expression in renal cell carcinomas and their metastases , 2004, Virchows Archiv.

[52]  S. Loening,et al.  Tumor type M2 pyruvate kinase expression in metastatic renal cell carcinoma , 2003, Urological Research.

[53]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[54]  T. Katayama,et al.  Site-directed Mutational Analysis for the ATP Binding of DnaA Protein , 1998, The Journal of Biological Chemistry.

[55]  B. Cockburn,et al.  Deletion and Site-directed Mutagenesis of the ATP-binding Motif (P-loop) in the Bifunctional Murine Atp-Sulfurylase/Adenosine 5′-Phosphosulfate Kinase Enzyme* , 1998, The Journal of Biological Chemistry.

[56]  K. Hamada,et al.  A point mutation within each of two ATP-binding motifs inactivates the functions of elongation factor 3. , 1996, Biochimica et biophysica acta.

[57]  A. Kibel,et al.  Tumour suppression by the human von Hippel-Lindau gene product , 1995, Nature Medicine.

[58]  T. Tanaka,et al.  The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. , 1986, The Journal of biological chemistry.

[59]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[60]  P. Seglen,et al.  3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. Burk,et al.  On respiratory impairment in cancer cells. , 1956, Science.

[62]  O. Warburg On the origin of cancer cells. , 1956, Science.