Promotional effect of oxygen storage capacity on oxy-dehydrogenation of ethylbenzene with CO2 over κ-Ce2Zr2O8(111)

[1]  Fanxing Li,et al.  Effect of Promoters on Manganese-Containing Mixed Metal Oxides for Oxidative Dehydrogenation of Ethane via a Cyclic Redox Scheme , 2017 .

[2]  Tehua Wang,et al.  Nanoflake-assembled Al2O3-supported CeO2-ZrO2 as an efficient catalyst for oxidative dehydrogenation of ethylbenzene with CO2 , 2017 .

[3]  Fanxing Li,et al.  Oxidative Dehydrogenation of Ethane: A Chemical Looping Approach , 2016 .

[4]  S. Basu,et al.  Role of Reduced CeO2(110) Surface for CO2 Reduction to CO and Methanol , 2016 .

[5]  Xue-qing Gong,et al.  Clustering of Oxygen Vacancies at CeO2(111): Critical Role of Hydroxyls. , 2016, Physical review letters.

[6]  Wen‐ying Li,et al.  Ethylbenzene dehydrogenation to styrene with CO2 over V2O5(001): A periodic density functional theory study , 2015 .

[7]  N. Nelson,et al.  Role Of CO2 As a Soft Oxidant For Dehydrogenation of Ethylbenzene to Styrene over a High-Surface-Area Ceria Catalyst , 2015 .

[8]  S. Basu,et al.  CO2 Reduction to Methanol on CeO2 (110) Surface: a Density Functional Theory Study , 2015 .

[9]  Wen‐ying Li,et al.  The dehydrogenation of ethylbenzene with CO2 over CexZr1 − xO2 solid solutions , 2015 .

[10]  M. C. Rangel,et al.  Ethylbenzene dehydrogenation in the presence of carbon dioxide over magnesia-supported iron oxides , 2014 .

[11]  C. Shin,et al.  Characterization and activity of V2O5/CeO2-MgO catalyst in the dehydrogenation of ethylbenzene to styrene , 2014, Korean Journal of Chemical Engineering.

[12]  Xue-qing Gong,et al.  A DFT + U study of CO oxidation at CeO2(110) and (111) surfaces with oxygen vacancies , 2013 .

[13]  Vijay Ramani,et al.  CeO2 surface oxygen vacancy concentration governs in situ free radical scavenging efficacy in polymer electrolytes. , 2012, ACS applied materials & interfaces.

[14]  Zhuo Cheng,et al.  Carbon dioxide activation and dissociation on ceria (110): a density functional theory study. , 2012, The Journal of chemical physics.

[15]  Hyuck-Mo Lee,et al.  CO oxidation mechanism on CeO(2)-supported Au nanoparticles. , 2012, Journal of the American Chemical Society.

[16]  De Chen,et al.  Role of CO2 in ethylbenzene dehydrogenation over Fe2O3(0 0 0 1) from first principles , 2011 .

[17]  D. Su,et al.  Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. , 2010, Angewandte Chemie.

[18]  K. Prince,et al.  Ceria reoxidation by CO2: A model study , 2010 .

[19]  Kazuhiro Saito,et al.  Role of lattice oxygen of metal oxides in the dehydrogenation of ethylbenzene under a carbon dioxide atmosphere. , 2010, The journal of physical chemistry. A.

[20]  M. V. Ganduglia-Pirovano,et al.  Role of ceria in oxidative dehydrogenation on supported vanadia catalysts. , 2010, Journal of the American Chemical Society.

[21]  Xue-qing Gong,et al.  A Model to Understand the Oxygen Vacancy Formation in Zr-Doped CeO2: Electrostatic Interaction and Structural Relaxation , 2009 .

[22]  Annabella Selloni,et al.  Surface and subsurface oxygen vacancies in anatase TiO 2 and differences with rutile , 2009 .

[23]  M. S. Hegde,et al.  Controlled synthesis of nanocrystalline CeO2 and Ce1−xMxO2−δ (M=Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method: Structure and oxygen storage capacity , 2008 .

[24]  S. Fabris,et al.  CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations , 2008 .

[25]  A. Suzuki,et al.  Origin and dynamics of oxygen storage/release in a Pt/ordered CeO2-ZrO2 catalyst studied by time-resolved XAFS analysis. , 2007, Angewandte Chemie.

[26]  Ataullah Khan,et al.  Structural Characterization and Oxidehydrogenation Activity of CeO2/Al2O3 and V2O5/CeO2/Al2O3 Catalysts , 2007 .

[27]  Wenning Wang,et al.  Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface. , 2006, Journal of the American Chemical Society.

[28]  Jianguo Wang,et al.  Structure and properties of the alumina-supported vanadia catalysts for ethylbenzene dehydrogenation in the presence of carbon dioxide , 2006 .

[29]  H. Nishiguchi,et al.  Anaerobic oxidation of isobutane II. Catalysis by Mg-V complex oxides , 2006 .

[30]  Stefano de Gironcoli,et al.  Electronic and atomistic structures of clean and reduced ceria surfaces. , 2005, The journal of physical chemistry. B.

[31]  K. Hermansson,et al.  Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study. , 2004, The Journal of chemical physics.

[32]  Masahiro Sugiura,et al.  Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid Solutions , 2003 .

[33]  H. Hosono,et al.  Crystal structure of metastable κ-CeZrO4 phase possessing an ordered arrangement of Ce and Zr ions , 2000 .

[34]  Raymond J. Gorte,et al.  Evidence for Oxidation of Ceria by CO2 , 2000 .

[35]  W. Lipscomb,et al.  The synchronous-transit method for determining reaction pathways and locating molecular transition states , 1977 .

[36]  Wen‐ying Li,et al.  Role of CO 2 in the oxy-dehydrogenation of ethylbenzene to styrene on the CeO 2 (111) surface , 2018 .

[37]  Jing Zhang,et al.  The role of CO2 in dehydrogenation of ethylbenzene over pure α-Fe2O3 catalysts with different facets , 2017 .