Fault-Tolerant Geometric Spanners

Abstract We present two new results about vertex and edge fault-tolerant spanners in Euclidean spaces. We describe the first construction of vertex and edge fault-tolerant spanners having optimal bounds for maximum degree and total cost. We present a greedy algorithm that for any t > 1 and any non-negative integer k, constructs a k-fault-tolerant t-spanner in which every vertex is of degree O(k) and whose total cost is O(k2) times the cost of the minimum spanning tree; these bounds are asymptotically optimal. Our next contribution is an efficient algorithm for constructing good fault-tolerant spanners. We present a new, sufficient condition for a graph to be a k-fault-tolerant spanner. Using this condition, we design an efficient algorithm that finds fault-tolerant spanners with asymptotically optimal bound for the maximum degree and almost optimal bound for the total cost.

[1]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[2]  S. Rao Kosaraju,et al.  A decomposition of multi-dimensional point-sets with applications to k-nearest-neighbors and n-body potential fields (preliminary version) , 1992, STOC '92.

[3]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[4]  Giri Narasimhan,et al.  New sparseness results on graph spanners , 1992, SCG '92.

[5]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[6]  Andrzej Lingas,et al.  Minimum Spanning Trees , 2022 .

[7]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[8]  Andrzej Lingas,et al.  Polynomial-Time Approximation Schemes for the Euclidean Survivable Network Design Problem , 2002, ICALP.

[9]  Giri Narasimhan,et al.  A new way to weigh Malnourished Euclidean graphs , 1995, SODA '95.

[10]  Michiel Smid,et al.  Closest-Point Problems in Computational Geometry , 2000, Handbook of Computational Geometry.

[11]  Rajmohan Rajaraman,et al.  Topology control and routing in ad hoc networks: a survey , 2002, SIGA.

[12]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[13]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[14]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[15]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[16]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[17]  Tamás Lukovszki,et al.  Distributed Maintenance of Resource Efficient Wireless Network Topologies (Distinguished Paper) , 2002, Euro-Par.

[18]  Giri Narasimhan,et al.  Improved Algorithms for Constructing Fault-Tolerant Spanners , 2001, Algorithmica.

[19]  C. Levcopoulos,et al.  There are planar graphs almost as good as the complete graphs and as short as minimum spanning trees (invited) , 1989 .

[20]  Andrzej Lingas,et al.  Fast Approximation Schemes for Euclidean Multi-connectivity Problems , 2000, ICALP.

[21]  Giri Narasimhan,et al.  Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.

[22]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[23]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[24]  Kurt Mehlhorn,et al.  Dynamic fractional cascading , 1990, Algorithmica.

[25]  L.J. Guibas,et al.  Geometric spanners for routing in mobile networks , 2001, IEEE Journal on Selected Areas in Communications.

[26]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[27]  Michiel H. M. Smid,et al.  Efficient Construction of a Bounded Degree Spanner with Low Weight , 1994, ESA.

[28]  Tamás Lukovszki,et al.  New Results of Fault Tolerant Geometric Spanners , 1999, WADS.

[29]  Andrzej Lingas,et al.  On approximability of the minimum-cost k-connected spanning subgraph problem , 1999, SODA '99.

[30]  David P. Dobkin,et al.  Generating Sparse Spanners for Weighted Graphs , 1990, SWAT.