Variations in antioxidant defense during the development of the solitary bee Osmia bicornis

[1]  D. Guez A common pesticide decreases foraging success and survival in honey bees: questioning the ecological relevance , 2013, Frontiers in Physiology.

[2]  P. Migula,et al.  Within and between seasonal changes of detoxifying capabilities of Cameraria ohridella (Lepidoptera : Gracillariidae) larvae. , 2012, Comptes rendus biologies.

[3]  K. Żółtowska,et al.  Changes in the Antioxidative System of the Red Mason Bee (Osmia Rufa) (Hymenoptera: Megachilidae) Induced by Artificially Elongated Diapause , 2012 .

[4]  Aleksandra Łangowska,et al.  Histological structure of the Midgut of honey bees (Apis Mellifera L.) Fed Pollen Substitutes Fortified with Probiotics , 2012 .

[5]  D. Goulson,et al.  Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production , 2012, Science.

[6]  Mickaël Henry,et al.  A Common Pesticide Decreases Foraging Success and Survival in Honey Bees , 2012, Science.

[7]  Z. Lipiński,et al.  Supplementation of the honey bee diet with vitamin C: The effect on the antioxidative system of Apis mellifera carnica brood at different stages , 2012 .

[8]  J. Pettis,et al.  Varroa destructor: research avenues towards sustainable control , 2012, Journal of Apicultural Research.

[9]  E. Strohm,et al.  Effects of constant and fluctuating temperatures on the development of the solitary bee Osmia bicornis (Hymenoptera: Megachilidae) , 2011, Apidologie.

[10]  S. Seo,et al.  Cloning and induction patterns of Cu/Zn superoxide dismutase in responses to immune elicitors and nucleopolyhedrovirus in the beet armyworm Spodoptera exigua , 2010 .

[11]  J. Biesmeijer,et al.  Global pollinator declines: trends, impacts and drivers. , 2010, Trends in ecology & evolution.

[12]  M. Berenbaum,et al.  Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis , 2010, Insect molecular biology.

[13]  Y. Kalender,et al.  Exposure to streptomycin alters oxidative and antioxidative response in larval midgut tissues of Galleria mellonella , 2009 .

[14]  N. Krishnan,et al.  Glutathione-ascorbic acid redox cycle and thioredoxin reductase activity in the digestive tract of Leptinotarsa decemlineata (Say). , 2009, Insect biochemistry and molecular biology.

[15]  Jason B. Williams,et al.  Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms , 2008, Experimental Gerontology.

[16]  Brosi A. Bradley,et al.  Effects of the Insecticide Phosmet on Solitary Bee Foraging and Nesting in Orchards of Capitol Reef National Park, Utah , 2007, Environmental entomology.

[17]  L. Després,et al.  The evolutionary ecology of insect resistance to plant chemicals. , 2007, Trends in ecology & evolution.

[18]  Julia A. Jones Does an Earth system perspective provide fundamental insights into ecology , 2007 .

[19]  G. Benkovskaya,et al.  Intraspecies differences in mechanisms of formation of protective processes in the honeybee Apis mellifera , 2007, Journal of Evolutionary Biochemistry and Physiology.

[20]  A. Klein,et al.  Importance of pollinators in changing landscapes for world crops , 2007, Proceedings of the Royal Society B: Biological Sciences.

[21]  B. Chance,et al.  The assay of catalases and peroxidases. , 2006, Methods of biochemical analysis.

[22]  G. Robinson,et al.  Genes of the antioxidant system of the honey bee: annotation and phylogeny , 2006, Insect molecular biology.

[23]  Z. Lipiński,et al.  Preliminary evidence associating oxidative stress in honey bee drone brood with Varroa destructor , 2005 .

[24]  D. Blagojević,et al.  Cold hardiness in Ostrinia nubilalis (Lepidoptera: Pyralidae): glycerol content, hexose monophosphate shunt activity, and antioxidative defense system , 2004 .

[25]  D. Blagojević,et al.  Role of antioxidant defense during different stages of preadult life cycle in European corn borer (Ostrinia nubilalis, Hubn.): Diapause and metamorphosis. , 2004, Archives of insect biochemistry and physiology.

[26]  R. Barbehenn Antioxidants in Grasshoppers: Higher Levels Defend the Midgut Tissues of a Polyphagous Species Than a Graminivorous Species , 2003, Journal of Chemical Ecology.

[27]  Brian G. Wolff,et al.  Forecasting Agriculturally Driven Global Environmental Change , 2001, Science.

[28]  M. M. Martín,et al.  Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen. , 2001, Journal of insect physiology.

[29]  C. Rice-Evans,et al.  Antioxidant activity applying an improved ABTS radical cation decolorization assay. , 1999, Free radical biology & medicine.

[30]  D. J. Candy,et al.  Coordination and Integration of Metabolism in Insect Flight , 1997 .

[31]  D. Blagojević,et al.  Effect of the Host Plant on the Antioxidative Defence in the Midgut of Lymantria dispar L. Caterpillars of Different Population Origins. , 1997, Journal of insect physiology.

[32]  S. Pinnell,et al.  Topical vitamin C in aging. , 1996, Clinics in dermatology.

[33]  C. Rice-Evans,et al.  Techniques in Free Radical Research , 1991 .

[34]  W. Dauterman,et al.  Induction of glutathione S-transferase by phenobarbital and pesticides in various house fly strains and its effect on toxicity , 1982 .

[35]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.

[36]  D. Teper,et al.  Red mason bee (Osmia rufa L.) as a pollinator of rape plantations , 2009 .

[37]  John M. Walker,et al.  The Protein Protocols Handbook , 2009, Springer Protocols Handbooks.

[38]  Z. Lipiński,et al.  Effects of dietary transgenic Bacillus thuringiensis maize Poland on hive worker honeybees , 2008 .

[39]  N. Krishnan,et al.  Stage-specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata. , 2007, Journal of insect physiology.

[40]  N. Krishnan,et al.  Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? , 2006, Journal of insect physiology.

[41]  A. Cieszkowski EFFECT OF POLLINATION OF ONION SEEDS UNDER ISOLATION BY THE RED MASON BEE (Osmia rufa L.) (Apoidea, Megachilidae) ON THE SETTING AND QUALITY OF OBTAINED SEEDS Zdzis³aw W ilkaniec, K arol G iejdasz, Grzegorz P rószyñski , 2004 .

[42]  Mieczys ³ aw REARING AND UTILIZATION OF THE RED MASON BEE - Osmia rufa L. (Hymenoptera, Megachilidae) FOR ORCHARD POLLINATION , 2004 .

[43]  K. Giejdasz,et al.  Individual development of the red mason bee [Osmia rufa L., Megachilidae] under natural and laboratory conditions , 2002 .

[44]  Simon J. Yu Insect Glutathione S-Transferases , 1996 .

[45]  Alastair Aitken,et al.  Protein Determination by UV Absorption , 1996 .

[46]  N. Motoyama,et al.  Separation of multiple forms of acidic glutathione S-transferase isozymes in a susceptible and a resistant strain of house fly, Musca domestica (L.). , 1995, Archives of insect biochemistry and physiology.

[47]  Z. Wilkaniec Możliwości zastosowania Osmia rufa L. (Apoidea, Megachilidae) w zapylaniu niektórych roślin uprawnych , 1991 .

[48]  D. Frohlich,et al.  Characterization of glutathione S-transferases in a solitary bee, Megachile rotundata (Fab.) (hymenoptera: megachilidae) and inhibition by chalcones, flavone, quercetin and tridiphane-diol , 1989 .

[49]  R. G. Allen,et al.  Role of Glutathione in the Aging and Development of Insects , 1986 .

[50]  R. S. Sohal,et al.  Insect aging. Strategies and mechanisms. , 1986 .

[51]  H. Aebi,et al.  Catalase in vitro. , 1984, Methods in enzymology.

[52]  H. Shimanuki,et al.  CHEMICAL COMPOSITION AND NUTRITIVE VALUE OF BEE-COLLECTED AND BEE-STORED POLLEN , 1978 .

[53]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .