Quantum corrections to holographic entanglement entropy

A bstractWe consider entanglement entropy in quantum field theories with a gravity dual. In the gravity description, the leading order contribution comes from the area of a minimal surface, as proposed by Ryu-Takayanagi. Here we describe the one loop correction to this formula. The minimal surface divides the bulk into two regions. The bulk loop correction is essentially given by the bulk entanglement entropy between these two bulk regions. We perform some simple checks of this proposal.

[1]  On geometric entropy , 1994, hep-th/9401072.

[2]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory , 2009, 0905.2069.

[3]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[4]  S. Solodukhin,et al.  Distributional Geometry of Squashed Cones , 2013, 1306.4000.

[5]  Michael M Wolf Violation of the entropic area law for fermions. , 2006, Physical review letters.

[6]  A note on the holographic interpretation of string theory backgrounds with varying flux , 2001, hep-th/0101013.

[7]  Aitor Lewkowycz,et al.  Generalized gravitational entropy , 2013, 1304.4926.

[8]  Tadashi Takayanagi,et al.  Holographic entanglement entropy: an overview , 2009, 0905.0932.

[9]  S. Hartnoll,et al.  Electron stars for holographic metallic criticality , 2010, 1008.2828.

[10]  Ling-Yan Hung,et al.  Relative entropy and holography , 2013, 1305.3182.

[11]  Iyer,et al.  Some properties of the Noether charge and a proposal for dynamical black hole entropy. , 1994, Physical review. D, Particles and fields.

[12]  Symmetry breaking and axionic strings in the warped deformed conifold , 2004, hep-th/0405282.

[13]  An operator product expansion for the mutual information in AdS/CFT , 2013, 1305.1064.

[14]  Dimitri Gioev,et al.  Entanglement entropy of fermions in any dimension and the Widom conjecture. , 2006, Physical review letters.

[15]  T. Faulkner The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT , 2013, 1303.7221.

[16]  Sergey N. Solodukhin,et al.  Entanglement Entropy of Black Holes , 2011, Living reviews in relativity.

[17]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[18]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[19]  I. Klebanov,et al.  Entanglement as a probe of confinement , 2007, 0709.2140.

[20]  Xi Dong,et al.  Holographic entanglement beyond classical gravity , 2013, 1306.4682.

[21]  Frolov,et al.  Black hole entropy: Off shell versus on shell. , 1996, Physical review. D, Particles and fields.

[22]  H. Casini,et al.  Remarks on the entanglement entropy for disconnected regions , 2008, 0812.1773.

[23]  M. Zaldarriaga,et al.  The phase transition to eternal inflation , 2008, 0802.1067.

[24]  J. Boer,et al.  Holographic entanglement entropy in Lovelock gravities , 2011, 1101.5781.

[25]  T. Takayanagi,et al.  Holographic Fermi surfaces and entanglement entropy , 2011, 1111.1023.

[26]  M. Luty,et al.  Renormalization of entanglement entropy and the gravitational effective action , 2013, 1302.1878.

[27]  Susskind,et al.  Black hole entropy in canonical quantum gravity and superstring theory. , 1994, Physical review. D, Particles and fields.

[28]  Robert C. Myers,et al.  On the architecture of spacetime geometry , 2012, 1212.5183.

[29]  M. Headrick,et al.  Preprint typeset in JHEP style- HYPER VERSION arXiv:0704.3719 [hep-th] , 2022 .

[30]  Arpan Bhattacharyya,et al.  Entanglement entropy in higher derivative holography , 2013, 1305.6694.

[31]  E. Tonni,et al.  Holographic entanglement plateaux , 2013, Journal of High Energy Physics.

[32]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[33]  S. Sachdev Model of a Fermi liquid using gauge-gravity duality , 2011, 1107.5321.

[34]  A. Sen Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions , 2012, Journal of High Energy Physics.

[35]  J. Cardy Some results on the mutual information of disjoint regions in higher dimensions , 2013, 1304.7985.

[36]  J. McGreevy,et al.  Emergent quantum criticality, Fermi surfaces, and AdS[subscript 2] , 2011 .

[37]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory: II , 2010, 1011.5482.

[38]  S. Solodukhin Entanglement entropy, conformal invariance and extrinsic geometry , 2008, 0802.3117.

[39]  I. Klebanov,et al.  Supergravity and a confining gauge theory: Duality cascades and χSB-resolution of naked singularities , 2000, hep-th/0007191.

[40]  Thomas Hartman Entanglement Entropy at Large Central Charge , 2013, 1303.6955.

[41]  S.N.Solodukhin The Conical Singularity And Quantum Corrections To Entropy Of Black Hole , 1994, hep-th/9407001.

[42]  R. Myers,et al.  On holographic entanglement entropy and higher curvature gravity , 2011, 1101.5813.

[43]  M. Raamsdonk,et al.  Building up spacetime with quantum entanglement , 2010, 1005.3035.

[44]  Elliott H. Lieb,et al.  Entropy inequalities , 1970 .

[45]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[46]  Matthew Headrick,et al.  Entanglement Renyi entropies in holographic theories , 2010, 1006.0047.

[47]  F. Mahmoudi,et al.  Supersymmetric constraints from Bs → μ+μ− and B → K*μ+μ− observables , 2012, 1205.1845.

[48]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[49]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[50]  T. Takayanagi,et al.  Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy , 2009, 0901.0924.

[51]  S. Solodukhin,et al.  On one-loop renormalization of black-hole entropy , 1994, hep-th/9412020.