Preferential usage of some minor codons in bacteria.

In many bacterial species, such as Deinococcus radiodurans, Haemophilus influenzae, and Methanobacterium thermoautotrophicum, some minor codons are preferentially used near the initiation codon. Among these codons, there are some minor codons that have strong preference for the initiation site in the high codon adaptation index (CAI) group (comprising of highly expressed genes) rather than in the low CAI genes group (comprising of low expressing genes). In the present study, codon usage in the initiation site and in the rest of the gene was systematically compared in the 27 complete bacterial genomes and Saccharomyces cerevisiae genome. Furthermore, we classified genes into two groups according to the CAI values and conducted the same analysis for each of the two groups. Our results suggest a role for some minor codons in the initiation site of the regulating translation system in many bacteria. We have summarized codons that are preferentially used in the initiation site and probably play a role in regulating genes expression in these organisms.

[1]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[2]  Y. Kawarabayasi,et al.  Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[3]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[4]  S. Salzberg,et al.  Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. , 1999, Science.

[5]  Y. Nakamura,et al.  Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[6]  P. V. Haastert,et al.  Optimizing heterologous expression in dictyostelium: importance of 5' codon adaptation. , 2000, Nucleic acids research.

[7]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[8]  M. Inouye,et al.  Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. , 1994, Genes & development.

[9]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[10]  Ronald W. Davis,et al.  Comparative genomes of Chlamydia pneumoniae and C. trachomatis , 1999, Nature Genetics.

[11]  B. Barrell,et al.  The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences , 2000, Nature.

[12]  M. Inouye,et al.  Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. , 1990, Nucleic acids research.

[13]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[14]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[15]  T. Ikemura Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. , 1981, Journal of molecular biology.

[16]  F. Robb,et al.  Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. , 1998, DNA research : an international journal for rapid publication of reports on genes and genomes.

[17]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[18]  S. Salzberg,et al.  Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. , 2000, Science.

[19]  G. Church,et al.  Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics , 1997, Journal of bacteriology.

[20]  M. Bulmer,et al.  Reduced synonymous substitution rate at the start of enterobacterial genes. , 1993, Nucleic acids research.

[21]  T. Ikemura Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. , 1981, Journal of molecular biology.

[22]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[23]  B. Barrell,et al.  Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491 , 2000, Nature.

[24]  Benjamin L. King,et al.  Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori , 1999, Nature.

[25]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[26]  Paul M. Sharp,et al.  Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes , 1986, Nucleic Acids Res..

[27]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[28]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[29]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[30]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[31]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[32]  M. Bulmer Codon usage and intragenic position. , 1988, Journal of theoretical biology.

[33]  T. Ikemura Codon usage and tRNA content in unicellular and multicellular organisms. , 1985, Molecular biology and evolution.

[34]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.