An overview of memristive cryptography

Abstract Smaller, smarter and faster edge devices in the Internet of things era demand secure data analysis and transmission under resource constraints of hardware architecture. Lightweight cryptography on edge hardware is an emerging topic that is essential to ensure data security in near-sensor computing systems such as mobiles, drones, smart cameras and wearables. In this article, the current state of memristive cryptography is placed in context of lightweight hardware cryptography. The paper provides a brief overview of the traditional hardware lightweight cryptography and cryptanalysis approaches. The contrast for memristive cryptography with respect to traditional approaches is evident through this article, and need to develop a more concrete approach to developing memristive cryptanalysis to test memristive cryptographic approaches is highlighted.

[1]  Vincent Rijmen,et al.  The Design of Rijndael: AES - The Advanced Encryption Standard , 2002 .

[2]  Jiaming Zhang,et al.  Analogue signal and image processing with large memristor crossbars , 2017, Nature Electronics.

[3]  Farnood Merrikh-Bayat,et al.  3-D Memristor Crossbars for Analog and Neuromorphic Computing Applications , 2017, IEEE Transactions on Electron Devices.

[4]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[5]  Lars R. Knudsen,et al.  Truncated and Higher Order Differentials , 1994, FSE.

[6]  Abhranil Maiti,et al.  Improved Ring Oscillator PUF: An FPGA-friendly Secure Primitive , 2011, Journal of Cryptology.

[7]  Kristin E. Lauter,et al.  Postquantum Cryptography, Part 2 , 2018, IEEE Secur. Priv..

[8]  Jongsung Kim,et al.  Impossible Differential Cryptanalysis for Block Cipher Structures , 2003, INDOCRYPT.

[9]  Ingrid Verbauwhede,et al.  Hardware Designer's Guide to Fault Attacks , 2013, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[10]  María Naya-Plasencia,et al.  Rebound Attack on JH42 , 2011, ASIACRYPT.

[11]  Jongsung Kim,et al.  HIGHT: A New Block Cipher Suitable for Low-Resource Device , 2006, CHES.

[12]  Gang Qu,et al.  A survey on memristor modeling and security applications , 2015, Sixteenth International Symposium on Quality Electronic Design.

[13]  Florian Mendel,et al.  The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl , 2009, FSE.

[14]  L. Chua Memristor-The missing circuit element , 1971 .

[15]  Ulrich Rührmair,et al.  Efficient Erasable PUFs from Programmable Logic and Memristors , 2018, IACR Cryptol. ePrint Arch..

[16]  Guang Gong,et al.  Hummingbird: Ultra-Lightweight Cryptography for Resource-Constrained Devices , 2010, Financial Cryptography Workshops.

[17]  Eli Biham,et al.  Miss in the Middle Attacks on IDEA and Khufu , 1999, FSE.

[18]  Rengarajan Amirtharaj,et al.  Survey and Analysis of Hardware Cryptographic and Steganographic Systems on FPGA , 2012 .

[19]  Alfred Menezes,et al.  Elliptic Curve Cryptography , 2005, Encyclopedia of Cryptography and Security.

[20]  Jean-Pierre Seifert,et al.  Physical Characterization of Arbiter PUFs , 2014, IACR Cryptol. ePrint Arch..

[21]  Kannan Balasubramanian,et al.  Recent Developments in Cryptography: A Survey , 2018 .

[22]  Fernando Corinto,et al.  Memristor Circuits: Pulse Programming via Invariant Manifolds , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Sergey Panasenko,et al.  Lightweight Cryptography: Underlying Principles and Approaches , 2011 .

[24]  Somanath Tripathy,et al.  ESF: an efficient security framework for wireless sensor network , 2013, Int. J. Commun. Networks Distributed Syst..

[25]  Andrey Bogdanov,et al.  Biclique Cryptanalysis of the Full AES , 2011, ASIACRYPT.

[26]  Leon O. Chua,et al.  Five non-volatile memristor enigmas solved , 2018, Applied Physics A.

[27]  Masanobu Katagi,et al.  The 128-Bit Blockcipher CLEFIA , 2007, RFC.

[28]  Shona Leitch,et al.  Social Engineering and its Impact via the Internet , 2006 .

[29]  María Naya-Plasencia,et al.  Cryptanalysis of Full Sprout , 2015, Annual International Cryptology Conference.

[30]  Marc Joye,et al.  Weierstraß Elliptic Curves and Side-Channel Attacks , 2002, Public Key Cryptography.

[31]  Alex Pappachen James,et al.  Analog Backpropagation Learning Circuits for Memristive Crossbar Neural Networks , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[32]  Hannu Tenhunen,et al.  International Conference on Ambient Systems , Networks and Technologies ( ANT 2015 ) SEA : A Secure and E ffi cient Authentication and Authorization Architecture for IoT-Based Healthcare Using Smart Gateways , 2015 .

[33]  Bruce Schneier,et al.  A SELF-STUDY COURSE IN BLOCK-CIPHER CRYPTANALYSIS , 2000, Cryptologia.

[34]  Alexander V. Sergienko,et al.  Quantum Communications and Cryptography , 2005 .

[35]  D. Stewart,et al.  The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits , 2005 .

[36]  Yee Wei Law,et al.  KLEIN: A New Family of Lightweight Block Ciphers , 2010, RFIDSec.

[37]  Tim Güneysu,et al.  Compact Implementation and Performance Evaluation of Hash Functions in ATtiny Devices , 2012, CARDIS.

[38]  Debdeep Mukhopadhyay,et al.  Khudra: A New Lightweight Block Cipher for FPGAs , 2014, SPACE.

[39]  Cheng Wang,et al.  PUFFIN: A Novel Compact Block Cipher Targeted to Embedded Digital Systems , 2008, 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools.

[40]  Babak Sadeghiyan,et al.  MIBS: A New Lightweight Block Cipher , 2009, CANS.

[41]  Wang Bo,et al.  A memristor-based chaotic system and its application in image encryption , 2018 .

[42]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[43]  Zhisong Xiao,et al.  Neuromorphic Computing with Memristor Crossbar , 2018 .

[44]  Roel Maes,et al.  Physically Unclonable Functions , 2013, Springer Berlin Heidelberg.

[45]  Michael Lynn,et al.  Hacking Exposed Wireless , 2007 .

[46]  Wei Lu,et al.  Two-terminal resistive switches (memristors) for memory and logic applications , 2011, 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011).

[47]  Mohammad Dakhilalian,et al.  Impossible Differential Attacks on 13-Round CLEFIA-128 , 2011, Journal of Computer Science and Technology.

[48]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[49]  Dengguo Feng,et al.  Side-Channel Attacks: Ten Years After Its Publication and the Impacts on Cryptographic Module Security Testing , 2005, IACR Cryptol. ePrint Arch..

[50]  Andrew B. Kahng,et al.  Scaling: More than Moore's law , 2010, IEEE Design & Test of Computers.

[51]  Axel Poschmann,et al.  Lightweight cryptography: cryptographic engineering for a pervasive world , 2009, IACR Cryptol. ePrint Arch..

[52]  Miodrag Potkonjak,et al.  Hardware-Based Public-Key Cryptography with Public Physically Unclonable Functions , 2009, Information Hiding.

[53]  Ingrid Verbauwhede,et al.  Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions , 2010, Towards Hardware-Intrinsic Security.

[54]  Mark Stamp,et al.  Applied Cryptanalysis: Breaking Ciphers in the Real World , 2007 .

[55]  Chae Hoon Lim,et al.  mCrypton - A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors , 2005, WISA.

[56]  Fernando Corinto,et al.  Memristor-based chaotic circuit for pseudo-random sequence generators , 2016, 2016 18th Mediterranean Electrotechnical Conference (MELECON).

[57]  G. Edward Suh,et al.  Physical Unclonable Functions for Device Authentication and Secret Key Generation , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[58]  Domenic Forte,et al.  Memristor PUF—A Security Primitive: Theory and Experiment , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[59]  Miodrag Potkonjak,et al.  Nano-PPUF: A Memristor-Based Security Primitive , 2012, 2012 IEEE Computer Society Annual Symposium on VLSI.

[60]  Daniel Holcomb,et al.  Nanoscale diffusive memristor crossbars as physical unclonable functions. , 2018, Nanoscale.

[61]  Kazuhiko Minematsu,et al.  $\textnormal{\textsc{TWINE}}$ : A Lightweight Block Cipher for Multiple Platforms , 2012, Selected Areas in Cryptography.

[62]  Safaa J. Kasbah,et al.  An analysis framework for hardware and software implementations with applications from cryptography , 2017, Comput. Electr. Eng..

[63]  Nikolaos G. Bourbakis,et al.  A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[64]  Dengguo Feng,et al.  Impossible Differential Cryptanalysis of Reduced-Round ARIA and Camellia , 2007, Journal of Computer Science and Technology.

[65]  Christof Paar,et al.  Block Ciphers - Focus on the Linear Layer (feat. PRIDE) , 2014, CRYPTO.

[66]  P. Vontobel,et al.  Writing to and reading from a nano-scale crossbar memory based on memristors , 2009, Nanotechnology.

[67]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[68]  Anne Canteaut,et al.  Sieve-in-the-Middle: Improved MITM Attacks (Full Version) , 2013, IACR Cryptol. ePrint Arch..

[69]  A. E. Harmanci,et al.  Impossible Differential Cryptanalysis of Reduced-Round LBlock , 2012, WISTP.

[70]  Shahar Kvatinsky,et al.  Towards a memristive hardware secure hash function (MemHash) , 2017, 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).

[71]  Louis Goubin,et al.  A survey of fault attacks in pairing based cryptography , 2015, Cryptography and Communications.

[72]  Howard Huff Into The Nano Era: Moore's Law Beyond Planar Silicon CMOS , 2008 .

[73]  Sascha Vongehr,et al.  The Missing Memristor has Not been Found , 2015, Scientific Reports.

[74]  Derek Abbott,et al.  Emerging Physical Unclonable Functions With Nanotechnology , 2016, IEEE Access.

[75]  Peng Li,et al.  Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[76]  Kyoji Shibutani,et al.  The 128-Bit Blockcipher CLEFIA (Extended Abstract) , 2007, FSE.

[77]  Alex Pappachen James,et al.  Neuron inspired data encoding memristive multi-level memory cell , 2018, ArXiv.

[78]  Hongjun Wu,et al.  Improved Meet-in-the-Middle Cryptanalysis of KTANTAN (Poster) , 2011, ACISP.

[79]  Gregor Leander,et al.  On Linear Hulls, Statistical Saturation Attacks, PRESENT and a Cryptanalysis of PUFFIN , 2011, EUROCRYPT.

[80]  María Naya-Plasencia,et al.  How to Improve Rebound Attacks , 2011, IACR Cryptol. ePrint Arch..

[81]  Seokhie Hong,et al.  Biclique Cryptanalysis of Lightweight Block Ciphers PRESENT, Piccolo and LED , 2012, IACR Cryptol. ePrint Arch..

[82]  Leon O. Chua,et al.  Neuromemristive Circuits for Edge Computing: A Review , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[83]  Tony Tae-Hyoung Kim,et al.  Design of SRAM PUF with improved uniformity and reliability utilizing device aging effect , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[84]  María Naya-Plasencia,et al.  Cryptanalysis of ARMADILLO2 , 2011, ASIACRYPT.

[85]  Vincent Rijmen,et al.  Improved Impossible Differential Cryptanalysis of 7-Round AES-128 , 2010, INDOCRYPT.

[86]  Isaac Abraham,et al.  The case for rejecting the memristor as a fundamental circuit element , 2018, Scientific Reports.

[87]  Anne Canteaut,et al.  PRINCE - A Low-latency Block Cipher for Pervasive Computing Applications (Full version) , 2012, IACR Cryptol. ePrint Arch..

[88]  Wenling Wu,et al.  LBlock: A Lightweight Block Cipher , 2011, ACNS.

[89]  Tyrone Fernando,et al.  Analysis and generation of chaos using compositely connected coupled memristors. , 2018, Chaos.

[90]  Praveen Gauravaram,et al.  Blockchain for IoT security and privacy: The case study of a smart home , 2017, 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops).

[91]  María Naya-Plasencia,et al.  Scrutinizing and Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon (Full Version) , 2014, IACR Cryptol. ePrint Arch..

[92]  Alex Pappachen James,et al.  Memristive Non-Idealities: Is there any Practical Implications for Designing Neural Network Chips? , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[93]  Chong Kuan Chen,et al.  IoT Security: Ongoing Challenges and Research Opportunities , 2014, 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications.

[94]  K. Nishimura,et al.  Probability to meet in the middle , 2005, Journal of Cryptology.

[95]  Johnny Cache,et al.  Hacking Exposed Wireless: Wireless Security Secrets & Solutions , 2007 .

[96]  Dmitri B. Strukov,et al.  Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors , 2018 .

[97]  S. Kyoji,et al.  Piccolo: An Ultra-Lightweight Blockcipher , 2011 .

[98]  Leon O. Chua,et al.  Cryptography based on chaotic systems , 1997 .

[99]  Matthew J. B. Robshaw,et al.  PRINTcipher: A Block Cipher for IC-Printing , 2010, CHES.

[100]  Spyros Stathopoulos,et al.  Multibit memory operation of metal-oxide bilayer memristors Supplementary information , 2017 .

[101]  Gang Qu,et al.  Memristors for Secret Sharing-Based Lightweight Authentication , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[102]  Christof Paar,et al.  A Survey of Lightweight-Cryptography Implementations , 2007, IEEE Design & Test of Computers.

[103]  Karsten Beckmann,et al.  Design Considerations for Memristive Crossbar Physical Unclonable Functions , 2018, ACM J. Emerg. Technol. Comput. Syst..

[104]  Aleksandr Ometov,et al.  Feasibility characterization of cryptographic primitives for constrained (wearable) IoT devices , 2016, 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops).

[105]  Jean-Jacques Quisquater,et al.  High-speed hardware implementations of Elliptic Curve Cryptography: A survey , 2007, J. Syst. Archit..

[106]  Joy Persial,et al.  Side channel Attack-Survey , 2011 .

[107]  Jason Smith,et al.  The SIMON and SPECK lightweight block ciphers , 2015, 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[108]  Vincent Rijmen,et al.  Cryptanalysis of Reduced-Round SIMON32 and SIMON48 , 2014, INDOCRYPT.

[109]  Vincent Rijmen,et al.  Links Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis , 2015, CRYPTO.