Decentralized fuzzy CFAR detectors in homogeneous Pearson clutter background

In this paper, we analyze the decentralized CA-CFAR, GO-CFAR and SO-CFAR detectors using fuzzy fusion rules in heavy tailed homogeneous clutter modeled by a Pearson distribution. We generalize our study by considering a distributed detection system with 'L' detectors and using the 'maximum', 'minimum', 'algebraic sum' and 'algebraic product' fuzzy rules at the data fusion center. For each detector considered, we derive the membership function which maps the decision to the false alarm space and compute the threshold at the fusion center. From the Monte Carlo simulations conducted to assess the detection performance in homogeneous Pearson distributed clutter, we observe that the probability of detection increases with the number of detectors. However, no improvement is obtained beyond L=11 and GSNR >30dB. In most decentralized fuzzy CFAR detectors considered, the distributed fuzzy SO-CFAR detectors with the 'algebraic sum' fuzzy fusion rule presents the highest probability of detection.

[1]  Carles Antón-Haro,et al.  Advances in signal processing-assisted cross-layer designs , 2006, Signal Process..

[2]  Chrysostomos L. Nikias,et al.  Performance assessment of CFAR processors in Pearson-distributed clutter , 2000, IEEE Trans. Aerosp. Electron. Syst..

[3]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[4]  Ercan E. Kuruoglu Analytical representation for positive /spl alpha/-stable densities , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[5]  A. Elias-Fuste,et al.  CFAR data fusion center with inhomogeneous receivers , 1992 .

[6]  F. Soltani,et al.  Distributed CA-CFAR and OS-CFAR detection using fuzzy spaces and fuzzy fusion rules , 2004 .

[7]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[8]  M. Barkat,et al.  Decentralized CFAR signal detection , 1989 .

[9]  Amir Zaimbashi,et al.  Distributed Fuzzy CFAR Detection for Weibull Clutter , 2008, IEICE Trans. Commun..

[10]  J. W. Minett,et al.  A fuzzy approach to signal integration , 2002 .

[11]  G. B. Goldstein,et al.  False-Alarm Regulation in Log-Normal and Weibull Clutter , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[12]  G. Trunk Range Resolution of Targets Using Automatic Detectors , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[13]  R. D. Pierce RCS characterization using the alpha-stable distribution , 1996, Proceedings of the 1996 IEEE National Radar Conference.

[14]  Amir Zaimbashi,et al.  Weighted order statistic and fuzzy rules CFAR detector for Weibull clutter , 2008, Signal Process..

[15]  D. Schleher,et al.  Radar Detection in Weibull Clutter , 1976, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Faouzi Soltani,et al.  Performance analysis of some CFAR detectors in homogeneous and non-homogeneous Pearson-distributed clutter , 2006, Signal Process..

[17]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[18]  C. L. Nikias,et al.  Signal processing with alpha-stable distributions and applications , 1995 .

[19]  R. D. Pierce Application of the positive alpha-stable distribution , 1997, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics.

[20]  Chengpeng Hao,et al.  Performance Analysis of OSAP-CFAR Detector in K Distribution Background , 2010, 2010 2nd International Workshop on Intelligent Systems and Applications.

[21]  V. G. Hansen,et al.  Constant false alarm rate processing in search radars , 1973 .

[22]  J. W. Minett,et al.  CFAR data fusion using fuzzy integration , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[23]  K. Ward Compound representation of high resolution sea clutter , 1980 .

[24]  H. M. Finn,et al.  Adaptive detection mode with threshold control as a function of spatially sampled clutter level estimates , 1968 .

[25]  Simon Watts,et al.  Radar detection prediction in sea clutter using the compound K-distribution model , 1985 .